1
0
forked from cgvr/DeltaVR

19 Commits

Author SHA1 Message Date
13c1e8a0f6 Changes in sound attributions 2025-12-27 12:17:15 +00:00
24543cce38 Upload files to "Doc/designs" 2025-12-16 13:59:03 +00:00
9af96fed99 Upload files to "Doc/clips" 2025-12-16 13:45:02 +00:00
ac87f2f8ef Update README.md
Just a small reference change
2025-12-07 22:21:10 +00:00
856ff3ca40 Update README.md
Adding myself into credits.
2025-12-07 17:10:52 +00:00
693b3a572e Upload files to "Doc/designs" 2025-12-02 13:37:36 +00:00
8977957054 Upload files to "Doc/clips" 2025-12-02 13:36:51 +00:00
b563be1158 Upload files to "Doc/clips" 2025-11-18 14:08:38 +00:00
616532e69c Upload files to "Doc/clips" 2025-11-18 14:03:31 +00:00
450efe675a Upload files to "Doc/clips" 2025-11-18 14:00:18 +00:00
cce7492556 Upload files to "Doc/designs" 2025-11-17 19:20:02 +00:00
e197206d0a Upload files to "Doc/designs" 2025-11-17 19:07:21 +00:00
dc7aa3b9b9 Upload files to "Doc/designs" 2025-11-17 18:03:37 +00:00
54d44afcec Upload files to "Doc/designs" 2025-11-04 17:32:58 +00:00
15c2e62e92 Upload files to "Doc/clips" 2025-11-04 17:28:46 +00:00
c4fafd1dd3 Delete Doc/clips/Hand-Collider-Prototype-Clip.gif 2025-11-04 17:26:11 +00:00
1c03f1773b Upload files to "Doc/clips" 2025-11-04 17:25:57 +00:00
ef3bc5da39 Upload files to "Doc/designs" 2025-10-21 14:03:55 +00:00
ed66253b06 Upload files to "Doc/clips" 2025-10-21 13:59:00 +00:00
37 changed files with 84 additions and 584 deletions

View File

@@ -1,3 +0,0 @@
CLOUDFLARE_ACCOUNT_ID=
CLOUDFLARE_API_TOKEN=
MODEL_FOLDER=

View File

@@ -1,4 +0,0 @@
.venv
.env
images/
models/

View File

@@ -1,2 +0,0 @@
### TODO
* Azure OpenAI API: https://wiki.ut.ee/spaces/AA/pages/218073589/Azure+OpenAI+API+teenus

View File

@@ -1,28 +0,0 @@
import torch
from diffusers import StableDiffusionPipeline, StableDiffusion3Pipeline
import time
start_timestamp = time.time()
#model = "stabilityai/stable-diffusion-3.5-medium" # generation time: 13 min
model = "stabilityai/stable-diffusion-3-medium-diffusers" # generation time: 10 min
#model = "stabilityai/stable-diffusion-2" # generation time: 4 sec
pipe = StableDiffusion3Pipeline.from_pretrained(model, torch_dtype=torch.float16)
#pipe = StableDiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
model_loaded_timestamp = time.time()
model_load_time = model_loaded_timestamp - start_timestamp
print(f"model load time: {round(model_load_time)} seconds")
prompt = "A majestic broadsword with a golden pommel, no background"
image = pipe(
prompt,
guidance_scale=3.0,
).images[0]
image_name = "image7.png"
image.save(f"images/{image_name}")
generation_time = time.time() - model_loaded_timestamp
print(f"image generation time: {round(generation_time)} seconds")

View File

@@ -1,152 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "1dc6faae",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import base64\n",
"import requests\n",
"from dotenv import load_dotenv"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3107275",
"metadata": {},
"outputs": [],
"source": [
"load_dotenv()\n",
"\n",
"ACCOUNT_ID = os.environ[\"CLOUDFLARE_ACCOUNT_ID\"]\n",
"API_TOKEN = os.environ[\"CLOUDFLARE_API_TOKEN\"]"
]
},
{
"cell_type": "markdown",
"id": "999adf95",
"metadata": {},
"source": [
"## Text to image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40b35163",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Saved: output.jpg (263282 bytes)\n",
"Saved: image9.jpg (263282 bytes)\n"
]
}
],
"source": [
"MODEL = \"@cf/black-forest-labs/flux-1-schnell\"\n",
"URL = f\"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/{MODEL}\"\n",
"\n",
"payload = {\n",
" \"prompt\": \"a slightly curved broadsword with a fancy golden crossguard\",\n",
"}\n",
"\n",
"headers = {\n",
" \"Authorization\": f\"Bearer {API_TOKEN}\",\n",
" \"Content-Type\": \"application/json\",\n",
"}\n",
"\n",
"resp = requests.post(URL, json=payload, headers=headers, timeout=60)\n",
"resp.raise_for_status()\n",
"\n",
"data = resp.json()\n",
"b64 = data[\"result\"][\"image\"]\n",
"if not b64:\n",
" raise RuntimeError(f\"Unexpected response structure: {data}\")\n",
"\n",
"img_bytes = base64.b64decode(b64)\n",
"\n",
"out_path = \"output.jpg\"\n",
"with open(out_path, \"wb\") as f:\n",
" f.write(img_bytes)\n",
"\n",
"print(f\"Saved: {out_path} ({len(img_bytes)} bytes)\")"
]
},
{
"cell_type": "markdown",
"id": "14a874c4",
"metadata": {},
"source": [
"## Text prompt refinement"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "485f6f46",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\"dark wooden battleaxe with bronze blade\"\n"
]
}
],
"source": [
"MODEL = \"@cf/meta/llama-3.2-3b-instruct\"\n",
"URL = f\"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/{MODEL}\"\n",
"\n",
"instructions = \"\"\"\n",
"User is talking about some object. Your task is to generate a short and concise description of it. Use only user's own words, keep it as short as possible.\n",
"Example:\n",
"User: 'Umm, okay, I would like a really cool sword, with for example a bright orange crossguard. And also it should be slightly curved.'\n",
"You: 'a slightly curved sword with bright orange crossguard'\n",
"\"\"\"\n",
"prompt = \"Umm, alright, can you please give me an epic battleaxe? It should have a dark wooden shaft and bronze blade.\"\n",
"\n",
"response = requests.post(URL,\n",
" headers={\"Authorization\": f\"Bearer {API_TOKEN}\"},\n",
" json={\n",
" \"messages\": [\n",
" {\"role\": \"system\", \"content\": instructions},\n",
" {\"role\": \"user\", \"content\": prompt}\n",
" ]\n",
" }\n",
")\n",
"data = response.json()\n",
"result_text = data[\"result\"][\"response\"]\n",
"print(result_text)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,105 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "2c0da293",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\henrisel.DOMENIS\\DeltaVR3DModelGeneration\\3d-generation-pipeline\\.venv\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import torch\n",
"from diffusers import FluxPipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "51879ff1",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Fetching 23 files: 0%| | 0/23 [00:00<?, ?it/s]"
]
}
],
"source": [
"model_name = \"black-forest-labs/FLUX.1-schnell\"\n",
"\n",
"pipe = FluxPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16)\n",
"#pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "50a38bf4",
"metadata": {},
"outputs": [],
"source": [
"prompt = \"slightly curved sword, one side blue and other side green\"\n",
"pipe_result = pipe(\n",
" prompt,\n",
" guidance_scale=0.0,\n",
" num_inference_steps=4,\n",
" max_sequence_length=256,\n",
" generator=torch.Generator(\"gpu\")\n",
")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b692177a",
"metadata": {},
"outputs": [],
"source": [
"pipe_result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d55eb3ce",
"metadata": {},
"outputs": [],
"source": [
"image = pipe_result[\"images\"][0]\n",
"image.save(\"flux-schnell.png\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,165 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "4826c91d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'2025-10-18-16-35-47'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from datetime import datetime\n",
"\n",
"datetime.now().strftime(\"%Y-%m-%d-%H-%M-%S\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9419e692",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"STDOUT:\n",
" Device used: cuda\n",
"After Remesh 9998 19996\n",
"\n",
"STDERR:\n",
" D:\\users\\henrisel\\stable-fast-3d\\.venv\\lib\\site-packages\\timm\\models\\layers\\__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers\n",
" warnings.warn(f\"Importing from {__name__} is deprecated, please import via timm.layers\", FutureWarning)\n",
"\n",
" 0%| | 0/1 [00:00<?, ?it/s]\n",
" 0%| | 0/1 [00:00<?, ?it/s]\n",
"Traceback (most recent call last):\n",
" File \"D:\\users\\henrisel\\stable-fast-3d\\run.py\", line 122, in <module>\n",
" mesh, glob_dict = model.run_image(\n",
" File \"D:\\users\\henrisel\\stable-fast-3d\\sf3d\\system.py\", line 286, in run_image\n",
" meshes, global_dict = self.generate_mesh(\n",
" File \"D:\\users\\henrisel\\stable-fast-3d\\sf3d\\system.py\", line 369, in generate_mesh\n",
" rast = self.baker.rasterize(\n",
" File \"D:\\users\\henrisel\\stable-fast-3d\\.venv\\lib\\site-packages\\texture_baker\\baker.py\", line 28, in rasterize\n",
" return torch.ops.texture_baker_cpp.rasterize(\n",
" File \"D:\\users\\henrisel\\stable-fast-3d\\.venv\\lib\\site-packages\\torch\\_ops.py\", line 1243, in __call__\n",
" return self._op(*args, **kwargs)\n",
"NotImplementedError: Could not run 'texture_baker_cpp::rasterize' with arguments from the 'CUDA' backend. This could be because the operator doesn't exist for this backend, or was omitted during the selective/custom build process (if using custom build). If you are a Facebook employee using PyTorch on mobile, please visit https://fburl.com/ptmfixes for possible resolutions. 'texture_baker_cpp::rasterize' is only available for these backends: [CPU, Meta, BackendSelect, Python, FuncTorchDynamicLayerBackMode, Functionalize, Named, Conjugate, Negative, ZeroTensor, ADInplaceOrView, AutogradOther, AutogradCPU, AutogradCUDA, AutogradXLA, AutogradMPS, AutogradXPU, AutogradHPU, AutogradLazy, AutogradMTIA, AutogradMAIA, AutogradMeta, Tracer, AutocastCPU, AutocastMTIA, AutocastMAIA, AutocastXPU, AutocastMPS, AutocastCUDA, FuncTorchBatched, BatchedNestedTensor, FuncTorchVmapMode, Batched, VmapMode, FuncTorchGradWrapper, PythonTLSSnapshot, FuncTorchDynamicLayerFrontMode, PreDispatch, PythonDispatcher].\n",
"\n",
"CPU: registered at texture_baker\\csrc\\baker.cpp:543 [kernel]\n",
"Meta: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\MetaFallbackKernel.cpp:23 [backend fallback]\n",
"BackendSelect: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\BackendSelectFallbackKernel.cpp:3 [backend fallback]\n",
"Python: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\PythonFallbackKernel.cpp:194 [backend fallback]\n",
"FuncTorchDynamicLayerBackMode: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\DynamicLayer.cpp:479 [backend fallback]\n",
"Functionalize: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\FunctionalizeFallbackKernel.cpp:375 [backend fallback]\n",
"Named: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\NamedRegistrations.cpp:7 [backend fallback]\n",
"Conjugate: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\ConjugateFallback.cpp:17 [backend fallback]\n",
"Negative: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\native\\NegateFallback.cpp:18 [backend fallback]\n",
"ZeroTensor: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\ZeroTensorFallback.cpp:86 [backend fallback]\n",
"ADInplaceOrView: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:104 [backend fallback]\n",
"AutogradOther: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:63 [backend fallback]\n",
"AutogradCPU: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:67 [backend fallback]\n",
"AutogradCUDA: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:75 [backend fallback]\n",
"AutogradXLA: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:87 [backend fallback]\n",
"AutogradMPS: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:95 [backend fallback]\n",
"AutogradXPU: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:71 [backend fallback]\n",
"AutogradHPU: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:108 [backend fallback]\n",
"AutogradLazy: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:91 [backend fallback]\n",
"AutogradMTIA: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:79 [backend fallback]\n",
"AutogradMAIA: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:83 [backend fallback]\n",
"AutogradMeta: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:99 [backend fallback]\n",
"Tracer: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\torch\\csrc\\autograd\\TraceTypeManual.cpp:294 [backend fallback]\n",
"AutocastCPU: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:322 [backend fallback]\n",
"AutocastMTIA: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:466 [backend fallback]\n",
"AutocastMAIA: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:504 [backend fallback]\n",
"AutocastXPU: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:542 [backend fallback]\n",
"AutocastMPS: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:209 [backend fallback]\n",
"AutocastCUDA: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:165 [backend fallback]\n",
"FuncTorchBatched: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\LegacyBatchingRegistrations.cpp:731 [backend fallback]\n",
"BatchedNestedTensor: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\LegacyBatchingRegistrations.cpp:758 [backend fallback]\n",
"FuncTorchVmapMode: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\VmapModeRegistrations.cpp:27 [backend fallback]\n",
"Batched: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\LegacyBatchingRegistrations.cpp:1075 [backend fallback]\n",
"VmapMode: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\VmapModeRegistrations.cpp:33 [backend fallback]\n",
"FuncTorchGradWrapper: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\TensorWrapper.cpp:210 [backend fallback]\n",
"PythonTLSSnapshot: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\PythonFallbackKernel.cpp:202 [backend fallback]\n",
"FuncTorchDynamicLayerFrontMode: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\DynamicLayer.cpp:475 [backend fallback]\n",
"PreDispatch: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\PythonFallbackKernel.cpp:206 [backend fallback]\n",
"PythonDispatcher: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\PythonFallbackKernel.cpp:198 [backend fallback]\n",
"\n",
"\n",
"Return Code: 1\n"
]
}
],
"source": [
"import subprocess\n",
"\n",
"MODEL_FOLDER = r\"D:\\users\\henrisel\\stable-fast-3d\"\n",
"PROJECT_FOLDER = r\"D:\\users\\henrisel\\DeltaVR3DModelGeneration\\3d-generation-pipeline\"\n",
"\n",
"# Path to the Python interpreter in the other virtual environment\n",
"venv_python = MODEL_FOLDER + r\"\\.venv\\Scripts\\python.exe\"\n",
"\n",
"# Path to the .py file you want to run\n",
"script_path = MODEL_FOLDER + r\"\\run.py\"\n",
"\n",
"# Optional: arguments to pass to the script\n",
"args = [MODEL_FOLDER + r\"\\demo_files\\examples\\chair1.png\", \"--output-dir\", PROJECT_FOLDER + r\"\\images\"]\n",
"\n",
"# Build the command\n",
"command = [venv_python, script_path] + args\n",
"\n",
"try:\n",
" # Run the subprocess\n",
" result = subprocess.run(command, capture_output=True, text=True)\n",
"\n",
" # Print output and errors\n",
" print(\"STDOUT:\\n\", result.stdout)\n",
" print(\"STDERR:\\n\", result.stderr)\n",
" print(\"Return Code:\", result.returncode)\n",
"\n",
"except Exception as e:\n",
" print(f\"Error occurred: {e}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee480ba6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,7 +0,0 @@
#torch==2.8.0+cu129 https://pytorch.org/get-started/previous-versions/
transformers==4.57.0
git+https://github.com/huggingface/diffusers.git
accelerate==1.10.1
huggingface_hub[hf_xet]==1.1.10
sentencepiece==0.2.1
protobuf==6.32.1

View File

@@ -1,109 +0,0 @@
import os
import base64
import requests
import argparse
import subprocess
from pathlib import Path
from datetime import datetime
from dotenv import load_dotenv
load_dotenv()
ACCOUNT_ID = os.environ["CLOUDFLARE_ACCOUNT_ID"]
API_TOKEN = os.environ["CLOUDFLARE_API_TOKEN"]
MODEL_FOLDER = os.environ["MODEL_FOLDER"]
def get_timestamp():
return datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
def text_to_image(prompt, output_path):
MODEL = "@cf/black-forest-labs/flux-1-schnell"
URL = f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/{MODEL}"
payload = {
"prompt": prompt,
}
headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json",
}
resp = requests.post(URL, json=payload, headers=headers, timeout=60)
resp.raise_for_status()
data = resp.json()
b64 = data["result"]["image"]
if not b64:
raise RuntimeError(f"Unexpected response structure: {data}")
img_bytes = base64.b64decode(b64)
with open(output_path, "wb") as f:
f.write(img_bytes)
def refine_text_prompt(prompt):
MODEL = "@cf/meta/llama-3.2-3b-instruct"
URL = f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/{MODEL}"
instructions = """
User is talking about some object. Your task is to generate a short and concise description of it. Use only user's own words, keep it as short as possible.
Example:
User: 'Umm, okay, I would like a really cool sword, with for example a bright orange crossguard. And also it should be slightly curved.'
You: 'a slightly curved sword with bright orange crossguard'
"""
response = requests.post(URL,
headers={"Authorization": f"Bearer {API_TOKEN}"},
json={
"messages": [
{"role": "system", "content": instructions},
{"role": "user", "content": prompt}
]
}
)
data = response.json()
return data["result"]["response"]
def image_to_3d(image_path, output_path):
venv_python = MODEL_FOLDER + r"\.venv\Scripts\python.exe"
script_path = MODEL_FOLDER + r"\run.py"
args = [image_path, "--output-dir", output_path]
command = [venv_python, script_path] + args
try:
# Run the subprocess
result = subprocess.run(command, capture_output=True, text=True)
# Print output and errors
print("STDOUT:\n", result.stdout)
print("STDERR:\n", result.stderr)
print("Return Code:", result.returncode)
except Exception as e:
print(f"Error occurred: {e}")
def main():
parser = argparse.ArgumentParser(description="Text to 3D model pipeline")
parser.add_argument("--prompt", type=str, required=True, help="User text prompt")
args = parser.parse_args()
user_prompt = args.prompt
print(f"User prompt: {user_prompt}")
refined_prompt = refine_text_prompt(user_prompt)
print(f"Refined prompt: {refined_prompt}")
timestamp = get_timestamp()
image_path = Path.cwd() / "images" / f"{timestamp}.jpg"
text_to_image(refined_prompt, image_path)
print(f"Generated image file: {image_path}")
model_path = Path.cwd() / "models" / timestamp
image_to_3d(image_path, model_path)
print(f"Generated 3D model file: {model_path}")
if __name__ == "__main__":
main()

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
Doc/clips/Door-Grabbing-Clip.gif LFS Normal file

Binary file not shown.

BIN
Doc/clips/Doors-Issue-Clip.gif LFS Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
Doc/clips/Ghost-Hand-Clip.gif LFS Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
Doc/designs/Old-VR-Doorknob.png LFS Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
Doc/designs/Real-Doorknob.jpg LFS Normal file

Binary file not shown.

BIN
Doc/designs/Two-Elevators.png LFS Normal file

Binary file not shown.

View File

@@ -66,23 +66,17 @@ Multiplayer and cross-play functionality. [Bachelor's Thesis](https://comserv.cs
**Raimond Tunnel**<br/>
Project management, visual design.
**Timur Nizamov**<br/>
Technical sound design.
Developed in the [Computer Graphcis and Virtual Reality Study Lab](https://cgvr.cs.ut.ee/) of the [Institute of Computer Science, University of Tartu](https://cs.ut.ee).
### Used Attributions
| Description | License | Source | Author |
|-----------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|------------------|
| Bold's car driving sound | Attribution NonCommercial 3.0 | [Link](https://freesound.org/people/Pfujimoto/sounds/14371/) | Pfujimoto |
| Bold's car braking sound | Attribution 3.0 | [Link](https://freesound.org/people/200154michaela/sounds/542448/) | 200154michaela |
| Bold's car horn sound | Attribution 4.0 | [Link](https://freesound.org/people/ceberation/sounds/235506/) | ceberation |
| Server rack model | Royalty Free, No AI License | [Link](https://www.cgtrader.com/free-3d-models/electronics/computer/simple-server-model) | anymelok |
| Server rack humming sound | Attribution 4.0 | [Link](https://freesound.org/people/jameswrowles/sounds/248217/) | jameswrowles |
| Fire suppression button press sound | Creative Commons 0 | [Link](https://freesound.org/people/LamaMakesMusic/sounds/403556/) | LamaMakesMusic |
| Fire suppression alarm sound | Attribution 3.0 | [Link](https://freesound.org/people/jobro/sounds/33737/) | jobro |
| Fire-suppressing gas release sound | Creative Commons 0 | [Link](https://freesound.org/people/mrmccormack/sounds/182359/) | mrmccormack |
| Coughing sound in response to fire-suppressing gas | Attribution 4.0 | [Link](https://freesound.org/people/qubodup/sounds/739416/) | qubodup |
| Robot movement sound | Creative Commons 0 | [Link](https://freesound.org/people/Brazilio123/sounds/661435/) | Brazilio123 |
| Portal humming sound | Attribution 4.0 | [Link](https://freesound.org/people/zimbot/sounds/122972/) | zimbot |
| Spacewalk UFO sound | Attribution NonCommercial 4.0 | [Link](https://freesound.org/people/Speedenza/sounds/209366/) | Speedenza |
| Keyboard icons | Creative Commons Attribution-NoDerivs 3.0 | [Link](https://icons8.com/) | icons8 |