1
0
forked from cgvr/DeltaVR

Compare commits

..

12 Commits

37 changed files with 48 additions and 1418 deletions

View File

@ -1,5 +0,0 @@
3D_GENERATION_URL=
MODEL_FOLDER=
CLOUDFLARE_ACCOUNT_ID=
CLOUDFLARE_API_TOKEN=

View File

@ -1,6 +0,0 @@
.venv
.env
__pycache__
images/
models/
logs/

View File

@ -1,6 +0,0 @@
### TODO
* Artikkel text-to-3d prompt engineeringu kohta: "Sel3DCraft: Interactive Visual Prompts for User-Friendly Text-to-3D Generation"
* TRELLIS: postprocessing_utils: texture baking mode: 'opt' vs 'fast' - hardcoded 'opt', kui võimaldada 'fast' siis tuleb error
### Notes
* TRELLIS: added functionality to specify texture baking optimisation total steps as an argument (`texture_opt_total_steps`), to replace the hardcoded 2500. But this is not tracked in Git (because modified this https://github.com/IgorAherne/trellis-stable-projectorz/releases/tag/latest)

View File

@ -1,61 +0,0 @@
import base64
import requests
import os
from dotenv import load_dotenv
load_dotenv()
ACCOUNT_ID = os.environ["CLOUDFLARE_ACCOUNT_ID"]
API_TOKEN = os.environ["CLOUDFLARE_API_TOKEN"]
def text_to_image_cloudflare(prompt, output_path):
MODEL = "@cf/black-forest-labs/flux-1-schnell"
URL = f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/{MODEL}"
payload = {
"prompt": prompt,
}
headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json",
}
resp = requests.post(URL, json=payload, headers=headers, timeout=60)
resp.raise_for_status()
data = resp.json()
b64 = data["result"]["image"]
if not b64:
raise RuntimeError(f"Unexpected response structure: {data}")
img_bytes = base64.b64decode(b64)
with open(output_path, "wb") as f:
f.write(img_bytes)
return True
def refine_text_prompt(prompt):
MODEL = "@cf/meta/llama-3.2-3b-instruct"
URL = f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/{MODEL}"
instructions = """
User is talking about some object. Your task is to generate a short and concise description of it. Use only user's own words, keep it as short as possible.
Example:
User: 'Umm, okay, I would like a really cool sword, with for example a bright orange crossguard. And also it should be slightly curved.'
You: 'a slightly curved sword with bright orange crossguard'
"""
response = requests.post(URL,
headers={"Authorization": f"Bearer {API_TOKEN}"},
json={
"messages": [
{"role": "system", "content": instructions},
{"role": "user", "content": prompt}
]
}
)
data = response.json()
return data["result"]["response"]

View File

@ -1,86 +0,0 @@
import requests
from invokeai_mcp_server import create_text2img_graph, enqueue_graph, wait_for_completion, get_image_url
from urllib.parse import urljoin
INVOKEAI_BASE_URL = "http://127.0.0.1:9090"
async def generate_image(arguments: dict):
# Extract parameters
prompt = arguments["prompt"]
negative_prompt = arguments.get("negative_prompt", "")
width = arguments.get("width", 512)
height = arguments.get("height", 512)
steps = arguments.get("steps", 30)
cfg_scale = arguments.get("cfg_scale", 7.5)
scheduler = arguments.get("scheduler", "euler")
seed = arguments.get("seed")
model_key = arguments.get("model_key")
lora_key = arguments.get("lora_key")
lora_weight = arguments.get("lora_weight", 1.0)
vae_key = arguments.get("vae_key")
print(f"Generating image with prompt: {prompt[:50]}...")
# Create graph
graph = await create_text2img_graph(
prompt=prompt,
negative_prompt=negative_prompt,
model_key=model_key,
lora_key=lora_key,
lora_weight=lora_weight,
vae_key=vae_key,
width=width,
height=height,
steps=steps,
cfg_scale=cfg_scale,
scheduler=scheduler,
seed=seed
)
# Enqueue and wait for completion
result = await enqueue_graph(graph)
batch_id = result["batch"]["batch_id"]
print(f"Enqueued batch {batch_id}, waiting for completion...")
completed = await wait_for_completion(batch_id)
# Extract image name from result
if "result" in completed and "outputs" in completed["result"]:
outputs = completed["result"]["outputs"]
# Find the image output
for node_id, output in outputs.items():
if output.get("type") == "image_output":
image_name = output["image"]["image_name"]
image_url = await get_image_url(image_name)
return urljoin(INVOKEAI_BASE_URL, image_url)
raise RuntimeError("Failed to generate image!")
def download_file(url, filepath):
response = requests.get(url)
if response.status_code == 200:
with open(filepath, "wb") as file:
file.write(response.content)
else:
raise RuntimeError(f"Failed to download image. Status code: {response.status_code}")
async def text_to_image_invoke_ai(prompt, output_path):
# see available model keys via GET http://127.0.0.1:9090/api/v2/models/?model_type=main
args = {
"prompt": prompt,
"width": 512,
"height": 512,
"model_key": "79401292-0a6b-428d-b7d7-f1e86caeba2b" # Juggernaut XL v9
#"model_key": "735f6485-6703-498f-929e-07cf0bbbd179" # Dreamshaper 8
}
image_url = await generate_image(args)
print("got image url: ", image_url)
download_file(image_url, output_path)

View File

@ -1,97 +0,0 @@
import subprocess
import os
import time
import requests
import base64
from dotenv import load_dotenv
load_dotenv()
MODEL_FOLDER = os.environ["MODEL_FOLDER"]
API_URL = os.environ["3D_GENERATION_URL"]
def image_to_3d_subprocess(image_path, output_path):
venv_python = MODEL_FOLDER + r"\.venv\Scripts\python.exe"
script_path = MODEL_FOLDER + r"\run.py"
args = [image_path, "--output-dir", output_path]
command = [venv_python, script_path] + args
try:
# Run the subprocess
result = subprocess.run(command, capture_output=True, text=True)
# Print output and errors
print("STDOUT:\n", result.stdout)
print("STDERR:\n", result.stderr)
print("Return Code:", result.returncode)
except Exception as e:
print(f"Error occurred: {e}")
def generate_no_preview(image_base64: str):
"""Generate 3D model from a single base64-encoded image without previews.
Args:
image_base64: Base64 string of the image (without 'data:image/...' prefix)
"""
try:
# Set generation parameters
params = {
'image_base64': image_base64,
'seed': 42,
'ss_guidance_strength': 7.5,
'ss_sampling_steps': 10,
'slat_guidance_strength': 7.5,
'slat_sampling_steps': 10,
'mesh_simplify_ratio': 0.99,
'texture_size': 1024,
#'texture_baking_mode': 'opt',
'texture_opt_total_steps': 1000,
'output_format': 'glb'
}
# Start generation
print("Starting generation...")
response = requests.post(f"{API_URL}/generate_no_preview", data=params)
response.raise_for_status()
# Poll status until complete
while True:
status = requests.get(f"{API_URL}/status").json()
print(f"Progress: {status['progress']}%")
if status['status'] == 'COMPLETE':
break
elif status['status'] == 'FAILED':
raise Exception(f"Generation failed: {status['message']}")
time.sleep(1)
# Download the model
print("Downloading model...")
response = requests.get(f"{API_URL}/download/model")
response.raise_for_status()
return response.content
except Exception as e:
print(f"Error: {str(e)}")
return None
def image_to_3d_api(image_path, output_path):
with open(image_path, 'rb') as image_file:
image_data = image_file.read()
base64_encoded = base64.b64encode(image_data).decode('utf-8')
model_binary = generate_no_preview(base64_encoded)
output_file = f"{output_path}.glb"
with open(output_file, 'wb') as f:
f.write(model_binary)
return output_file

View File

@ -1,152 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "1dc6faae",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import base64\n",
"import requests\n",
"from dotenv import load_dotenv"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3107275",
"metadata": {},
"outputs": [],
"source": [
"load_dotenv()\n",
"\n",
"ACCOUNT_ID = os.environ[\"CLOUDFLARE_ACCOUNT_ID\"]\n",
"API_TOKEN = os.environ[\"CLOUDFLARE_API_TOKEN\"]"
]
},
{
"cell_type": "markdown",
"id": "999adf95",
"metadata": {},
"source": [
"## Text to image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40b35163",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Saved: output.jpg (263282 bytes)\n",
"Saved: image9.jpg (263282 bytes)\n"
]
}
],
"source": [
"MODEL = \"@cf/black-forest-labs/flux-1-schnell\"\n",
"URL = f\"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/{MODEL}\"\n",
"\n",
"payload = {\n",
" \"prompt\": \"a slightly curved broadsword with a fancy golden crossguard\",\n",
"}\n",
"\n",
"headers = {\n",
" \"Authorization\": f\"Bearer {API_TOKEN}\",\n",
" \"Content-Type\": \"application/json\",\n",
"}\n",
"\n",
"resp = requests.post(URL, json=payload, headers=headers, timeout=60)\n",
"resp.raise_for_status()\n",
"\n",
"data = resp.json()\n",
"b64 = data[\"result\"][\"image\"]\n",
"if not b64:\n",
" raise RuntimeError(f\"Unexpected response structure: {data}\")\n",
"\n",
"img_bytes = base64.b64decode(b64)\n",
"\n",
"out_path = \"output.jpg\"\n",
"with open(out_path, \"wb\") as f:\n",
" f.write(img_bytes)\n",
"\n",
"print(f\"Saved: {out_path} ({len(img_bytes)} bytes)\")"
]
},
{
"cell_type": "markdown",
"id": "14a874c4",
"metadata": {},
"source": [
"## Text prompt refinement"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "485f6f46",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\"dark wooden battleaxe with bronze blade\"\n"
]
}
],
"source": [
"MODEL = \"@cf/meta/llama-3.2-3b-instruct\"\n",
"URL = f\"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/{MODEL}\"\n",
"\n",
"instructions = \"\"\"\n",
"User is talking about some object. Your task is to generate a short and concise description of it. Use only user's own words, keep it as short as possible.\n",
"Example:\n",
"User: 'Umm, okay, I would like a really cool sword, with for example a bright orange crossguard. And also it should be slightly curved.'\n",
"You: 'a slightly curved sword with bright orange crossguard'\n",
"\"\"\"\n",
"prompt = \"Umm, alright, can you please give me an epic battleaxe? It should have a dark wooden shaft and bronze blade.\"\n",
"\n",
"response = requests.post(URL,\n",
" headers={\"Authorization\": f\"Bearer {API_TOKEN}\"},\n",
" json={\n",
" \"messages\": [\n",
" {\"role\": \"system\", \"content\": instructions},\n",
" {\"role\": \"user\", \"content\": prompt}\n",
" ]\n",
" }\n",
")\n",
"data = response.json()\n",
"result_text = data[\"result\"][\"response\"]\n",
"print(result_text)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,122 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "50e24baa",
"metadata": {},
"outputs": [],
"source": [
"from invokeai_mcp_server import create_text2img_graph, enqueue_graph, wait_for_completion, get_image_url\n",
"from urllib.parse import urljoin\n",
"\n",
"import asyncio"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0407cd9a",
"metadata": {},
"outputs": [],
"source": [
"INVOKEAI_BASE_URL = \"http://127.0.0.1:9090\"\n",
"\n",
"\n",
"async def generate_image(arguments: dict):\n",
"\n",
" # Extract parameters\n",
" prompt = arguments[\"prompt\"]\n",
" negative_prompt = arguments.get(\"negative_prompt\", \"\")\n",
" width = arguments.get(\"width\", 512)\n",
" height = arguments.get(\"height\", 512)\n",
" steps = arguments.get(\"steps\", 30)\n",
" cfg_scale = arguments.get(\"cfg_scale\", 7.5)\n",
" scheduler = arguments.get(\"scheduler\", \"euler\")\n",
" seed = arguments.get(\"seed\")\n",
" model_key = arguments.get(\"model_key\")\n",
" lora_key = arguments.get(\"lora_key\")\n",
" lora_weight = arguments.get(\"lora_weight\", 1.0)\n",
" vae_key = arguments.get(\"vae_key\")\n",
"\n",
" #logger.info(f\"Generating image with prompt: {prompt[:50]}...\")\n",
"\n",
" # Create graph\n",
" graph = await create_text2img_graph(\n",
" prompt=prompt,\n",
" negative_prompt=negative_prompt,\n",
" model_key=model_key,\n",
" lora_key=lora_key,\n",
" lora_weight=lora_weight,\n",
" vae_key=vae_key,\n",
" width=width,\n",
" height=height,\n",
" steps=steps,\n",
" cfg_scale=cfg_scale,\n",
" scheduler=scheduler,\n",
" seed=seed\n",
" )\n",
"\n",
" # Enqueue and wait for completion\n",
" result = await enqueue_graph(graph)\n",
" batch_id = result[\"batch\"][\"batch_id\"]\n",
"\n",
" #logger.info(f\"Enqueued batch {batch_id}, waiting for completion...\")\n",
"\n",
" completed = await wait_for_completion(batch_id)\n",
"\n",
" # Extract image name from result\n",
" if \"result\" in completed and \"outputs\" in completed[\"result\"]:\n",
" outputs = completed[\"result\"][\"outputs\"]\n",
" # Find the image output\n",
" for node_id, output in outputs.items():\n",
" if output.get(\"type\") == \"image_output\":\n",
" image_name = output[\"image\"][\"image_name\"]\n",
" image_url = await get_image_url(image_name)\n",
"\n",
" text=f\"Image generated successfully!\\n\\nImage Name: {image_name}\\nImage URL: {image_url}\\n\\nYou can view the image at: {urljoin(INVOKEAI_BASE_URL, f'/api/v1/images/i/{image_name}/full')}\"\n",
" print(text)\n",
"\n",
" # Fallback if we couldn't find image output\n",
" #text=f\"Image generation completed but output format was unexpected. Batch ID: {batch_id}\\n\\nResult: {json.dumps(completed, indent=2)}\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6cf9d879",
"metadata": {},
"outputs": [],
"source": [
"async def main():\n",
" args = {\n",
" \"prompt\": \"a golden katana with a fancy pommel\"\n",
" }\n",
" await generate_image(args)\n",
"\n",
"asyncio.run(main())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@ -1,165 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "4826c91d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'2025-10-18-16-35-47'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from datetime import datetime\n",
"\n",
"datetime.now().strftime(\"%Y-%m-%d-%H-%M-%S\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9419e692",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"STDOUT:\n",
" Device used: cuda\n",
"After Remesh 9998 19996\n",
"\n",
"STDERR:\n",
" D:\\users\\henrisel\\stable-fast-3d\\.venv\\lib\\site-packages\\timm\\models\\layers\\__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers\n",
" warnings.warn(f\"Importing from {__name__} is deprecated, please import via timm.layers\", FutureWarning)\n",
"\n",
" 0%| | 0/1 [00:00<?, ?it/s]\n",
" 0%| | 0/1 [00:00<?, ?it/s]\n",
"Traceback (most recent call last):\n",
" File \"D:\\users\\henrisel\\stable-fast-3d\\run.py\", line 122, in <module>\n",
" mesh, glob_dict = model.run_image(\n",
" File \"D:\\users\\henrisel\\stable-fast-3d\\sf3d\\system.py\", line 286, in run_image\n",
" meshes, global_dict = self.generate_mesh(\n",
" File \"D:\\users\\henrisel\\stable-fast-3d\\sf3d\\system.py\", line 369, in generate_mesh\n",
" rast = self.baker.rasterize(\n",
" File \"D:\\users\\henrisel\\stable-fast-3d\\.venv\\lib\\site-packages\\texture_baker\\baker.py\", line 28, in rasterize\n",
" return torch.ops.texture_baker_cpp.rasterize(\n",
" File \"D:\\users\\henrisel\\stable-fast-3d\\.venv\\lib\\site-packages\\torch\\_ops.py\", line 1243, in __call__\n",
" return self._op(*args, **kwargs)\n",
"NotImplementedError: Could not run 'texture_baker_cpp::rasterize' with arguments from the 'CUDA' backend. This could be because the operator doesn't exist for this backend, or was omitted during the selective/custom build process (if using custom build). If you are a Facebook employee using PyTorch on mobile, please visit https://fburl.com/ptmfixes for possible resolutions. 'texture_baker_cpp::rasterize' is only available for these backends: [CPU, Meta, BackendSelect, Python, FuncTorchDynamicLayerBackMode, Functionalize, Named, Conjugate, Negative, ZeroTensor, ADInplaceOrView, AutogradOther, AutogradCPU, AutogradCUDA, AutogradXLA, AutogradMPS, AutogradXPU, AutogradHPU, AutogradLazy, AutogradMTIA, AutogradMAIA, AutogradMeta, Tracer, AutocastCPU, AutocastMTIA, AutocastMAIA, AutocastXPU, AutocastMPS, AutocastCUDA, FuncTorchBatched, BatchedNestedTensor, FuncTorchVmapMode, Batched, VmapMode, FuncTorchGradWrapper, PythonTLSSnapshot, FuncTorchDynamicLayerFrontMode, PreDispatch, PythonDispatcher].\n",
"\n",
"CPU: registered at texture_baker\\csrc\\baker.cpp:543 [kernel]\n",
"Meta: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\MetaFallbackKernel.cpp:23 [backend fallback]\n",
"BackendSelect: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\BackendSelectFallbackKernel.cpp:3 [backend fallback]\n",
"Python: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\PythonFallbackKernel.cpp:194 [backend fallback]\n",
"FuncTorchDynamicLayerBackMode: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\DynamicLayer.cpp:479 [backend fallback]\n",
"Functionalize: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\FunctionalizeFallbackKernel.cpp:375 [backend fallback]\n",
"Named: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\NamedRegistrations.cpp:7 [backend fallback]\n",
"Conjugate: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\ConjugateFallback.cpp:17 [backend fallback]\n",
"Negative: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\native\\NegateFallback.cpp:18 [backend fallback]\n",
"ZeroTensor: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\ZeroTensorFallback.cpp:86 [backend fallback]\n",
"ADInplaceOrView: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:104 [backend fallback]\n",
"AutogradOther: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:63 [backend fallback]\n",
"AutogradCPU: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:67 [backend fallback]\n",
"AutogradCUDA: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:75 [backend fallback]\n",
"AutogradXLA: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:87 [backend fallback]\n",
"AutogradMPS: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:95 [backend fallback]\n",
"AutogradXPU: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:71 [backend fallback]\n",
"AutogradHPU: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:108 [backend fallback]\n",
"AutogradLazy: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:91 [backend fallback]\n",
"AutogradMTIA: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:79 [backend fallback]\n",
"AutogradMAIA: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:83 [backend fallback]\n",
"AutogradMeta: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\VariableFallbackKernel.cpp:99 [backend fallback]\n",
"Tracer: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\torch\\csrc\\autograd\\TraceTypeManual.cpp:294 [backend fallback]\n",
"AutocastCPU: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:322 [backend fallback]\n",
"AutocastMTIA: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:466 [backend fallback]\n",
"AutocastMAIA: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:504 [backend fallback]\n",
"AutocastXPU: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:542 [backend fallback]\n",
"AutocastMPS: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:209 [backend fallback]\n",
"AutocastCUDA: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\autocast_mode.cpp:165 [backend fallback]\n",
"FuncTorchBatched: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\LegacyBatchingRegistrations.cpp:731 [backend fallback]\n",
"BatchedNestedTensor: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\LegacyBatchingRegistrations.cpp:758 [backend fallback]\n",
"FuncTorchVmapMode: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\VmapModeRegistrations.cpp:27 [backend fallback]\n",
"Batched: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\LegacyBatchingRegistrations.cpp:1075 [backend fallback]\n",
"VmapMode: fallthrough registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\VmapModeRegistrations.cpp:33 [backend fallback]\n",
"FuncTorchGradWrapper: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\TensorWrapper.cpp:210 [backend fallback]\n",
"PythonTLSSnapshot: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\PythonFallbackKernel.cpp:202 [backend fallback]\n",
"FuncTorchDynamicLayerFrontMode: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\functorch\\DynamicLayer.cpp:475 [backend fallback]\n",
"PreDispatch: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\PythonFallbackKernel.cpp:206 [backend fallback]\n",
"PythonDispatcher: registered at C:\\actions-runner\\_work\\pytorch\\pytorch\\pytorch\\aten\\src\\ATen\\core\\PythonFallbackKernel.cpp:198 [backend fallback]\n",
"\n",
"\n",
"Return Code: 1\n"
]
}
],
"source": [
"import subprocess\n",
"\n",
"MODEL_FOLDER = r\"D:\\users\\henrisel\\stable-fast-3d\"\n",
"PROJECT_FOLDER = r\"D:\\users\\henrisel\\DeltaVR3DModelGeneration\\3d-generation-pipeline\"\n",
"\n",
"# Path to the Python interpreter in the other virtual environment\n",
"venv_python = MODEL_FOLDER + r\"\\.venv\\Scripts\\python.exe\"\n",
"\n",
"# Path to the .py file you want to run\n",
"script_path = MODEL_FOLDER + r\"\\run.py\"\n",
"\n",
"# Optional: arguments to pass to the script\n",
"args = [MODEL_FOLDER + r\"\\demo_files\\examples\\chair1.png\", \"--output-dir\", PROJECT_FOLDER + r\"\\images\"]\n",
"\n",
"# Build the command\n",
"command = [venv_python, script_path] + args\n",
"\n",
"try:\n",
" # Run the subprocess\n",
" result = subprocess.run(command, capture_output=True, text=True)\n",
"\n",
" # Print output and errors\n",
" print(\"STDOUT:\\n\", result.stdout)\n",
" print(\"STDERR:\\n\", result.stderr)\n",
" print(\"Return Code:\", result.returncode)\n",
"\n",
"except Exception as e:\n",
" print(f\"Error occurred: {e}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee480ba6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,7 +0,0 @@
#torch==2.8.0+cu129 https://pytorch.org/get-started/previous-versions/
transformers==4.57.0
git+https://github.com/huggingface/diffusers.git
accelerate==1.10.1
huggingface_hub[hf_xet]==1.1.10
sentencepiece==0.2.1
protobuf==6.32.1

View File

@ -1,62 +0,0 @@
import argparse
import asyncio
import logging
import time
from pathlib import Path
from datetime import datetime
from dotenv import load_dotenv
from generate_image_local import text_to_image_invoke_ai
from generate_model_local import image_to_3d_api
load_dotenv()
def get_timestamp():
return datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
def setup_logger(base_folder, timestamp):
log_dir = base_folder / Path("logs")
log_dir.mkdir(parents=True, exist_ok=True)
logging.basicConfig(
filename=log_dir / f"{timestamp}.log",
level=logging.INFO,
force=True
)
async def main():
parser = argparse.ArgumentParser(description="Text to 3D model pipeline")
parser.add_argument("--prompt", type=str, required=True, help="User text prompt")
args = parser.parse_args()
input_prompt = args.prompt
print(f"Input prompt: {input_prompt}")
image_generation_prompt = input_prompt + ", single object, fully visible, plain neutral background, high-resolution, sharp details, soft studio lighting, front and side visible, realistic style, true-to-scale"
pipeline_folder = Path(__file__).resolve().parent
timestamp = get_timestamp()
setup_logger(pipeline_folder, timestamp)
time_checkpoint = time.time()
image_path = pipeline_folder / "images" / f"{timestamp}.jpg"
# TODO: use Invoke AI or Cloudflare, depending on env var
#text_to_image_cloudflare(image_generation_prompt, image_path)
await text_to_image_invoke_ai(image_generation_prompt, image_path)
image_generation_time = time.time() - time_checkpoint
time_checkpoint = time.time()
logging.info(f"Image generation time: {round(image_generation_time, 1)} s")
print(f"Generated image file: {image_path}")
model_path = pipeline_folder / "models" / timestamp
model_file = image_to_3d_api(image_path, model_path)
model_generation_time = time.time() - time_checkpoint
logging.info(f"Model generation time: {round(model_generation_time, 1)} s")
print(f"Generated 3D model file: {model_file}")
if __name__ == "__main__":
asyncio.run(main())

View File

@ -7,7 +7,7 @@ TextureImporter:
mipmaps: mipmaps:
mipMapMode: 0 mipMapMode: 0
enableMipMap: 1 enableMipMap: 1
sRGBTexture: 0 sRGBTexture: 1
linearTexture: 0 linearTexture: 0
fadeOut: 0 fadeOut: 0
borderMipMap: 0 borderMipMap: 0
@ -54,7 +54,7 @@ TextureImporter:
alphaUsage: 1 alphaUsage: 1
alphaIsTransparency: 0 alphaIsTransparency: 0
spriteTessellationDetail: -1 spriteTessellationDetail: -1
textureType: 1 textureType: 0
textureShape: 1 textureShape: 1
singleChannelComponent: 0 singleChannelComponent: 0
flipbookRows: 1 flipbookRows: 1

View File

@ -1,133 +0,0 @@
%YAML 1.1
%TAG !u! tag:unity3d.com,2011:
--- !u!21 &2100000
Material:
serializedVersion: 8
m_ObjectHideFlags: 0
m_CorrespondingSourceObject: {fileID: 0}
m_PrefabInstance: {fileID: 0}
m_PrefabAsset: {fileID: 0}
m_Name: Green
m_Shader: {fileID: 4800000, guid: 933532a4fcc9baf4fa0491de14d08ed7, type: 3}
m_Parent: {fileID: 0}
m_ModifiedSerializedProperties: 0
m_ValidKeywords: []
m_InvalidKeywords: []
m_LightmapFlags: 4
m_EnableInstancingVariants: 0
m_DoubleSidedGI: 0
m_CustomRenderQueue: -1
stringTagMap:
RenderType: Opaque
disabledShaderPasses: []
m_LockedProperties:
m_SavedProperties:
serializedVersion: 3
m_TexEnvs:
- _BaseMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _BumpMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _DetailAlbedoMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _DetailMask:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _DetailNormalMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _EmissionMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _MainTex:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _MetallicGlossMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _OcclusionMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _ParallaxMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _SpecGlossMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- unity_Lightmaps:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- unity_LightmapsInd:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- unity_ShadowMasks:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
m_Ints: []
m_Floats:
- _AlphaClip: 0
- _AlphaToMask: 0
- _Blend: 0
- _BlendModePreserveSpecular: 1
- _BumpScale: 1
- _ClearCoatMask: 0
- _ClearCoatSmoothness: 0
- _Cull: 2
- _Cutoff: 0.5
- _DetailAlbedoMapScale: 1
- _DetailNormalMapScale: 1
- _DstBlend: 0
- _DstBlendAlpha: 0
- _EnvironmentReflections: 1
- _GlossMapScale: 0
- _Glossiness: 0
- _GlossyReflections: 0
- _Metallic: 0
- _OcclusionStrength: 1
- _Parallax: 0.005
- _QueueOffset: 0
- _ReceiveShadows: 1
- _Smoothness: 0.5
- _SmoothnessTextureChannel: 0
- _SpecularHighlights: 1
- _SrcBlend: 1
- _SrcBlendAlpha: 1
- _Surface: 0
- _WorkflowMode: 1
- _ZWrite: 1
m_Colors:
- _BaseColor: {r: 0, g: 1, b: 0.0381248, a: 1}
- _Color: {r: 0, g: 1, b: 0.0381248, a: 1}
- _EmissionColor: {r: 0, g: 0, b: 0, a: 1}
- _SpecColor: {r: 0.19999996, g: 0.19999996, b: 0.19999996, a: 1}
m_BuildTextureStacks: []
--- !u!114 &6221994712197478572
MonoBehaviour:
m_ObjectHideFlags: 11
m_CorrespondingSourceObject: {fileID: 0}
m_PrefabInstance: {fileID: 0}
m_PrefabAsset: {fileID: 0}
m_GameObject: {fileID: 0}
m_Enabled: 1
m_EditorHideFlags: 0
m_Script: {fileID: 11500000, guid: d0353a89b1f911e48b9e16bdc9f2e058, type: 3}
m_Name:
m_EditorClassIdentifier:
version: 7

View File

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: 937c5f357ed270843bd43d1f7d5d475b
NativeFormatImporter:
externalObjects: {}
mainObjectFileID: 2100000
userData:
assetBundleName:
assetBundleVariant:

View File

@ -1,133 +0,0 @@
%YAML 1.1
%TAG !u! tag:unity3d.com,2011:
--- !u!114 &-7093071968994914494
MonoBehaviour:
m_ObjectHideFlags: 11
m_CorrespondingSourceObject: {fileID: 0}
m_PrefabInstance: {fileID: 0}
m_PrefabAsset: {fileID: 0}
m_GameObject: {fileID: 0}
m_Enabled: 1
m_EditorHideFlags: 0
m_Script: {fileID: 11500000, guid: d0353a89b1f911e48b9e16bdc9f2e058, type: 3}
m_Name:
m_EditorClassIdentifier:
version: 7
--- !u!21 &2100000
Material:
serializedVersion: 8
m_ObjectHideFlags: 0
m_CorrespondingSourceObject: {fileID: 0}
m_PrefabInstance: {fileID: 0}
m_PrefabAsset: {fileID: 0}
m_Name: Red
m_Shader: {fileID: 4800000, guid: 933532a4fcc9baf4fa0491de14d08ed7, type: 3}
m_Parent: {fileID: 0}
m_ModifiedSerializedProperties: 0
m_ValidKeywords: []
m_InvalidKeywords: []
m_LightmapFlags: 4
m_EnableInstancingVariants: 0
m_DoubleSidedGI: 0
m_CustomRenderQueue: -1
stringTagMap:
RenderType: Opaque
disabledShaderPasses: []
m_LockedProperties:
m_SavedProperties:
serializedVersion: 3
m_TexEnvs:
- _BaseMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _BumpMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _DetailAlbedoMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _DetailMask:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _DetailNormalMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _EmissionMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _MainTex:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _MetallicGlossMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _OcclusionMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _ParallaxMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- _SpecGlossMap:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- unity_Lightmaps:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- unity_LightmapsInd:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
- unity_ShadowMasks:
m_Texture: {fileID: 0}
m_Scale: {x: 1, y: 1}
m_Offset: {x: 0, y: 0}
m_Ints: []
m_Floats:
- _AlphaClip: 0
- _AlphaToMask: 0
- _Blend: 0
- _BlendModePreserveSpecular: 1
- _BumpScale: 1
- _ClearCoatMask: 0
- _ClearCoatSmoothness: 0
- _Cull: 2
- _Cutoff: 0.5
- _DetailAlbedoMapScale: 1
- _DetailNormalMapScale: 1
- _DstBlend: 0
- _DstBlendAlpha: 0
- _EnvironmentReflections: 1
- _GlossMapScale: 0
- _Glossiness: 0
- _GlossyReflections: 0
- _Metallic: 0
- _OcclusionStrength: 1
- _Parallax: 0.005
- _QueueOffset: 0
- _ReceiveShadows: 1
- _Smoothness: 0.5
- _SmoothnessTextureChannel: 0
- _SpecularHighlights: 1
- _SrcBlend: 1
- _SrcBlendAlpha: 1
- _Surface: 0
- _WorkflowMode: 1
- _ZWrite: 1
m_Colors:
- _BaseColor: {r: 1, g: 0, b: 0, a: 1}
- _Color: {r: 1, g: 0, b: 0, a: 1}
- _EmissionColor: {r: 0, g: 0, b: 0, a: 1}
- _SpecColor: {r: 0.19999996, g: 0.19999996, b: 0.19999996, a: 1}
m_BuildTextureStacks: []

View File

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: 707a698b0ec80454a8c68700bca72941
NativeFormatImporter:
externalObjects: {}
mainObjectFileID: 2100000
userData:
assetBundleName:
assetBundleVariant:

Binary file not shown.

View File

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: 0ec3982ba49c4b84ea95332cb090e115
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

View File

@ -1,144 +0,0 @@
using UnityEngine;
using System.Diagnostics;
using System.Threading.Tasks;
using GLTFast;
public class ModelGenerationPipelineStarter : MonoBehaviour
{
public Material activeMaterial;
public Material inactiveMaterial;
public Transform modelSpawnPoint;
private MeshRenderer meshRenderer;
public string inputPrompt;
// Start is called before the first frame update
void Start()
{
meshRenderer = GetComponent<MeshRenderer>();
}
// Update is called once per frame
void Update()
{
}
void OnTriggerEnter(Collider other)
{
KbmController controller = other.GetComponent<KbmController>();
if (controller != null)
{
meshRenderer.material = activeMaterial;
StartModeGenerationPipeline();
//LoadModel("D:\\henrisel\\DeltaVR3DModelGeneration\\3d-generation-pipeline\\models\\2025-11-17-16-13-33\\mesh.glb");
}
}
private void OnTriggerExit(Collider other)
{
KbmController controller = other.GetComponent<KbmController>();
if (controller != null)
{
meshRenderer.material = inactiveMaterial;
}
}
private async Task<string> GenerateModelAsync()
{
return await Task.Run(() =>
{
// Path to your virtual environment's python.exe
string pythonExe = @"D:\users\henrisel\DeltaVR3DModelGeneration\3d-generation-pipeline\.venv\Scripts\python.exe";
// Path to your Python script
string scriptPath = @"D:\users\henrisel\DeltaVR3DModelGeneration\3d-generation-pipeline\start_pipeline.py";
// Arguments to pass to the script
string arguments = $"{scriptPath} --prompt \"{inputPrompt}\"";
ProcessStartInfo psi = new ProcessStartInfo
{
FileName = pythonExe,
Arguments = arguments,
UseShellExecute = false,
RedirectStandardOutput = true,
RedirectStandardError = true,
CreateNoWindow = true
};
using (Process process = new Process())
{
process.StartInfo = psi;
process.OutputDataReceived += (sender, e) => UnityEngine.Debug.Log(e.Data);
process.ErrorDataReceived += (sender, e) => UnityEngine.Debug.LogError(e.Data);
process.Start();
string output = process.StandardOutput.ReadToEnd();
string error = process.StandardError.ReadToEnd();
process.WaitForExit();
// Extract model path from output
foreach (string line in output.Split('\n'))
{
if (line.StartsWith("Generated 3D model file: "))
{
return line.Replace("Generated 3D model file: ", "").Trim();
}
}
return null;
}
});
}
private async void StartModeGenerationPipeline()
{
string modelPath = await GenerateModelAsync();
if (!string.IsNullOrEmpty(modelPath))
{
UnityEngine.Debug.Log("Got generated model path: " + modelPath);
await LoadModel(modelPath);
}
else
{
UnityEngine.Debug.LogError("Model path not found in Python output.");
}
}
private async Task LoadModel(string modelPath)
{
var gltf = new GltfImport();
bool loadSuccess = await gltf.Load(modelPath);
UnityEngine.Debug.Log("Load model success: " + loadSuccess);
if (loadSuccess)
{
GameObject spawnedObject = new GameObject("spawned model");
spawnedObject.transform.parent = modelSpawnPoint;
spawnedObject.transform.position = modelSpawnPoint.position;
bool spawnSuccess = await gltf.InstantiateMainSceneAsync(spawnedObject.transform);
UnityEngine.Debug.Log("Spawn model success: " + spawnSuccess);
Transform spawnedObjectMainTransform = spawnedObject.transform.GetChild(0).transform;
GameObject spawnedObjectBody = spawnedObjectMainTransform.GetChild(0).transform.gameObject;
MeshCollider collider = spawnedObjectBody.AddComponent<MeshCollider>();
collider.convex = true;
MeshRenderer renderer = spawnedObjectBody.GetComponent<MeshRenderer>();
renderer.material.SetFloat("metallicFactor", 0);
spawnedObjectMainTransform.gameObject.AddComponent<Rigidbody>();
}
}
}

View File

@ -1,11 +0,0 @@
fileFormatVersion: 2
guid: 46e67223dce9b7a4783ed36b8ed65f19
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

BIN
Doc/clips/Bolt-Car-Network-Problem-Clip.gif (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/clips/Bolt-Car-Network-Results-Clip.gif (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/clips/Camera-Collider-Clip.gif (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/clips/Elevator-network-problem-Clip.gif (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/clips/Elevator-network-results-Clip.gif (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/clips/Hand-Collider-Prototype-Clip.gif (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/clips/Player-Hand-Collision-Complete-Clip.gif (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/clips/VR-Elevator-Example-Clip.gif (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/designs/Elevator-buttons-inside.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/designs/Model-Collider-Rework-Concept.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/designs/Moder-Collider-Rework-Results.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/designs/Network-Player-mirror.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/designs/Original-elevator-state-diagram.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Doc/designs/Player-Hand-Colliders.png (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -4,7 +4,6 @@
"com.unity.2d.tilemap": "1.0.0", "com.unity.2d.tilemap": "1.0.0",
"com.unity.ai.navigation": "1.1.1", "com.unity.ai.navigation": "1.1.1",
"com.unity.cinemachine": "2.9.5", "com.unity.cinemachine": "2.9.5",
"com.unity.cloud.gltfast": "6.14.1",
"com.unity.collab-proxy": "2.0.1", "com.unity.collab-proxy": "2.0.1",
"com.unity.ext.nunit": "1.0.6", "com.unity.ext.nunit": "1.0.6",
"com.unity.feature.vr": "1.0.0", "com.unity.feature.vr": "1.0.0",

View File

@ -31,12 +31,11 @@
"url": "https://packages.unity.com" "url": "https://packages.unity.com"
}, },
"com.unity.burst": { "com.unity.burst": {
"version": "1.8.24", "version": "1.8.3",
"depth": 1, "depth": 1,
"source": "registry", "source": "registry",
"dependencies": { "dependencies": {
"com.unity.mathematics": "1.2.1", "com.unity.mathematics": "1.2.1"
"com.unity.modules.jsonserialize": "1.0.0"
}, },
"url": "https://packages.unity.com" "url": "https://packages.unity.com"
}, },
@ -49,19 +48,6 @@
}, },
"url": "https://packages.unity.com" "url": "https://packages.unity.com"
}, },
"com.unity.cloud.gltfast": {
"version": "6.14.1",
"depth": 0,
"source": "registry",
"dependencies": {
"com.unity.burst": "1.8.24",
"com.unity.collections": "1.2.4",
"com.unity.mathematics": "1.2.6",
"com.unity.modules.jsonserialize": "1.0.0",
"com.unity.modules.unitywebrequest": "1.0.0"
},
"url": "https://packages.unity.com"
},
"com.unity.collab-proxy": { "com.unity.collab-proxy": {
"version": "2.0.1", "version": "2.0.1",
"depth": 0, "depth": 0,
@ -69,16 +55,6 @@
"dependencies": {}, "dependencies": {},
"url": "https://packages.unity.com" "url": "https://packages.unity.com"
}, },
"com.unity.collections": {
"version": "1.2.4",
"depth": 1,
"source": "registry",
"dependencies": {
"com.unity.burst": "1.6.6",
"com.unity.test-framework": "1.1.31"
},
"url": "https://packages.unity.com"
},
"com.unity.editorcoroutines": { "com.unity.editorcoroutines": {
"version": "1.0.0", "version": "1.0.0",
"depth": 1, "depth": 1,