forked from cgvr/DeltaVR
port InvokeAI API client to Unity, use it in ImageGenerationBox
This commit is contained in:
@@ -34,18 +34,6 @@ def get_client() -> httpx.AsyncClient:
|
||||
return http_client
|
||||
|
||||
|
||||
async def text_to_image_invoke_ai(prompt, output_path):
|
||||
# see available model keys via GET http://INVOKEAI_BASE_URL:9090/api/v2/models/?model_type=main
|
||||
args = {
|
||||
"prompt": prompt,
|
||||
"width": 512,
|
||||
"height": 512,
|
||||
"model_key": INVOKEAI_MODEL_KEY
|
||||
}
|
||||
image_url = await generate_image(args)
|
||||
print("got image url: ", image_url)
|
||||
download_file(image_url, output_path)
|
||||
|
||||
async def wait_for_completion(batch_id: str, queue_id: str = DEFAULT_QUEUE_ID, timeout: int = 300) -> dict:
|
||||
"""Wait for a batch to complete and return the most recent image."""
|
||||
client = get_client()
|
||||
@@ -107,60 +95,7 @@ async def wait_for_completion(batch_id: str, queue_id: str = DEFAULT_QUEUE_ID, t
|
||||
# Wait before checking again
|
||||
await asyncio.sleep(1)
|
||||
|
||||
async def generate_image(arguments: dict):
|
||||
|
||||
# Extract parameters
|
||||
prompt = arguments["prompt"]
|
||||
negative_prompt = arguments.get("negative_prompt", "")
|
||||
width = arguments.get("width", 512)
|
||||
height = arguments.get("height", 512)
|
||||
steps = arguments.get("steps", 30)
|
||||
cfg_scale = arguments.get("cfg_scale", 7.5)
|
||||
scheduler = arguments.get("scheduler", "euler")
|
||||
seed = arguments.get("seed")
|
||||
model_key = arguments.get("model_key")
|
||||
lora_key = arguments.get("lora_key")
|
||||
lora_weight = arguments.get("lora_weight", 1.0)
|
||||
vae_key = arguments.get("vae_key")
|
||||
|
||||
print(f"Generating image with prompt: {prompt[:50]}...")
|
||||
|
||||
# Create graph
|
||||
graph = await create_text2img_graph(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
model_key=model_key,
|
||||
lora_key=lora_key,
|
||||
lora_weight=lora_weight,
|
||||
vae_key=vae_key,
|
||||
width=width,
|
||||
height=height,
|
||||
steps=steps,
|
||||
cfg_scale=cfg_scale,
|
||||
scheduler=scheduler,
|
||||
seed=seed
|
||||
)
|
||||
|
||||
# Enqueue and wait for completion
|
||||
result = await enqueue_graph(graph)
|
||||
batch_id = result["batch"]["batch_id"]
|
||||
|
||||
print(f"Enqueued batch {batch_id}, waiting for completion...")
|
||||
|
||||
completed = await wait_for_completion(batch_id)
|
||||
|
||||
# Extract image name from result
|
||||
if "result" in completed and "outputs" in completed["result"]:
|
||||
outputs = completed["result"]["outputs"]
|
||||
# Find the image output
|
||||
for node_id, output in outputs.items():
|
||||
if output.get("type") == "image_output":
|
||||
image_name = output["image"]["image_name"]
|
||||
image_url = await get_image_url(image_name)
|
||||
|
||||
return urljoin(INVOKEAI_BASE_URL, image_url)
|
||||
|
||||
raise RuntimeError("Failed to generate image!")
|
||||
|
||||
def download_file(url, filepath):
|
||||
response = requests.get(url)
|
||||
@@ -486,4 +421,72 @@ async def create_text2img_graph(
|
||||
"edges": edges
|
||||
}
|
||||
|
||||
return graph
|
||||
return graph
|
||||
|
||||
async def generate_image(arguments: dict):
|
||||
|
||||
# Extract parameters
|
||||
prompt = arguments["prompt"]
|
||||
negative_prompt = arguments.get("negative_prompt", "")
|
||||
width = arguments.get("width", 512)
|
||||
height = arguments.get("height", 512)
|
||||
steps = arguments.get("steps", 30)
|
||||
cfg_scale = arguments.get("cfg_scale", 7.5)
|
||||
scheduler = arguments.get("scheduler", "euler")
|
||||
seed = arguments.get("seed")
|
||||
model_key = arguments.get("model_key")
|
||||
lora_key = arguments.get("lora_key")
|
||||
lora_weight = arguments.get("lora_weight", 1.0)
|
||||
vae_key = arguments.get("vae_key")
|
||||
|
||||
print(f"Generating image with prompt: {prompt[:50]}...")
|
||||
|
||||
# Create graph
|
||||
graph = await create_text2img_graph(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
model_key=model_key,
|
||||
lora_key=lora_key,
|
||||
lora_weight=lora_weight,
|
||||
vae_key=vae_key,
|
||||
width=width,
|
||||
height=height,
|
||||
steps=steps,
|
||||
cfg_scale=cfg_scale,
|
||||
scheduler=scheduler,
|
||||
seed=seed
|
||||
)
|
||||
|
||||
# Enqueue and wait for completion
|
||||
result = await enqueue_graph(graph)
|
||||
batch_id = result["batch"]["batch_id"]
|
||||
|
||||
print(f"Enqueued batch {batch_id}, waiting for completion...")
|
||||
|
||||
completed = await wait_for_completion(batch_id)
|
||||
|
||||
# Extract image name from result
|
||||
if "result" in completed and "outputs" in completed["result"]:
|
||||
outputs = completed["result"]["outputs"]
|
||||
# Find the image output
|
||||
for node_id, output in outputs.items():
|
||||
if output.get("type") == "image_output":
|
||||
image_name = output["image"]["image_name"]
|
||||
image_url = await get_image_url(image_name)
|
||||
|
||||
return urljoin(INVOKEAI_BASE_URL, image_url)
|
||||
|
||||
raise RuntimeError("Failed to generate image!")
|
||||
|
||||
|
||||
async def text_to_image_invoke_ai(prompt, output_path):
|
||||
# see available model keys via GET http://INVOKEAI_BASE_URL:9090/api/v2/models/?model_type=main
|
||||
args = {
|
||||
"prompt": prompt,
|
||||
"width": 512,
|
||||
"height": 512,
|
||||
"model_key": INVOKEAI_MODEL_KEY
|
||||
}
|
||||
image_url = await generate_image(args)
|
||||
print("got image url: ", image_url)
|
||||
download_file(image_url, output_path)
|
||||
|
||||
Reference in New Issue
Block a user