
1 | P a g e

Serializable Dictionary

Rotary Heart

Documentation Version: 2.0

Email: ma.rotaryheart@gmail.com

Description:

This package contains a class, SerializableDictionaryBase.cs, that can be inherited

to be able to have a serializable dictionary. There is no limitation for what to use as

Key or as Value, other than it being a serializable type. It also contains a class,

DataBaseExample.cs, that has a couple of examples of how to setup the dictionary.

2 | P a g e

Setup:

To use simply add the SerializableDictionary folder to your project (which is on

the package). It doesn’t need to be on root of your project, so feel free to move it

wherever you want.

How to use:
This section is divided into 3 different cases for easier explanation, but for any type

of implementation you will need to create a custom class, can be a nested class,

that inherits from SerializableDictionaryBase and setup the respective types for

key and value that are going to be used by the dictionary.

Note that for Unity to be able to serialize this class you need to add the attribute

[System.Serializable] to your class since that is the way Unity serialization works.

3 | P a g e

Contents
Pages System.. 4

Simple Dictionary .. 6

UnityEngine.Object as a key .. 7

Advanced Dictionary .. 9

Advanced Key .. 10

4 | P a g e

Pages System

The pages system can be useful if you have a huge dictionary, this system allows

the drawer to only draw up to a specific number of entries per page. It will work

the same way as any forum paging logic.

To enable the system, you need to go to the Edit > Preferences > RHSD and check

the Show Pages check box.

Preferences window

Page count will be how many entries you want to draw per page, it has a minimum

of 5, but it doesn’t have any maximum number.

Once the system has been enabled you will be able to see the pages section on any

dictionary drawer.

5 | P a g e

Pages section preview

By clicking on any number, you will be changing between the visible pages. This

will change what is currently being drawn on the dictionary. Note that you won’t

be able to reorder element between different pages, for this you will have to disable

the system, change the order, enable it back. Every other functionality will still

work without problems, including reordering elements on the same page.

6 | P a g e

Simple Dictionary

[System.Serializable]

public class MyDictionary : SerializableDictionaryBase<string, GameObject> {

}

On this example you can see that the dictionary that we will be using has a

string for key and a GameObject for value. With this now you can have a field

of type MyDictionary and you will be able to modify the data from the editor.

Preview of example provided

7 | P a g e

UnityEngine.Object as a key

If you want to use a UnityEngine.Object (GameObject, Texture, Sprite, etc)

type for key, there’s an extra step required for the system to handle it. First

create your dictionary class.

[System.Serializable]

public class MyDictionary : SerializableDictionaryBase<GameObject, string> {

}

Now you will need to go to the script RequiredReferences.cs and add the

reference (if it’s not included) needed here (in this case GameObject).

[UnityEngine.SerializeField]

private GameObject _gameObject;

This is needed because the Dictionary can’t handle null for a key so it requires a

default value and the editor already gives that value.

The last thing you will need is to setup the reference for the

RequiredReferences object on your editor. Drag and drop the References

scriptable object to the editor Req Reference field on top of the dictionary.

8 | P a g e

Now that everything is setup correctly you can start adding elements to your

dictionary.

9 | P a g e

Advanced Dictionary

If the value that you want to use is either an Array or a List, you cannot use it

directly into the dictionary value type because Unity doesn’t serialize Array of

Array or Array of List. Instead you need to wrap your Array or List with a custom

class/structure. See the following example.

[System.Serializable]

public class Int_IntArray : SerializableDictionaryBase<int, MyClass> { }

[System.Serializable]

public class MyClass

{

public int[] myArray;

}

[SerializeField]

private Int_IntArray _intArray;

This way unity can serialize your array and the system will work without any

problems.

10 | P a g e

Advanced Key

The system comes with an advanced attribute that can be used to allow keys to use

any custom drawer, but to be able to use this we need to let the compiler know how

to compare this advanced key. We will be using the example provided on the

package to explain how to make it work.

For this example, we are using the attribute Range to allow the key to be drawn

with the built-in range field. For this we need to setup the code as following:

//Include the needed attribute to the class

[System.Serializable]

public class AdvancedGenericClass

{

 [Range(0, 100)]

 public float value;

 //This equals function is added for convenience, it is not required

 public bool Equals(AdvancedGenericClass other)

 {

 if (ReferenceEquals(null, other)) return false;

 if (ReferenceEquals(this, other)) return true;

 return other.value == value;

 }

11 | P a g e

 //Override the Equals function to include any logic that we need to make sure

that the keys are the same. This is what will be used when working with the

dictionary

 public override bool Equals(object obj)

 {

 if (ReferenceEquals(null, obj)) return false;

 if (ReferenceEquals(this, obj)) return true;

 if (obj.GetType() != typeof(AdvancedGenericClass)) return false;

 return Equals((AdvancedGenericClass)obj);

 }

 //Finally override the GetHashCode and include any kind of HashCode check

 public override int GetHashCode()

 {

 unchecked

 {

 return value.GetHashCode();

 }

 }

}

[System.Serializable]

public class AdvanGeneric_String :

SerializableDictionaryBase<AdvancedGenericClass, string> { };

[SerializeField, DrawKeyAsProperty]

private AdvanGeneric_String _advancedGenericKey;

As you can see to make the system ignore the Generic type and draw it as a normal

property we need to use the attribute DrawKeyAsProperty on the dictionary field.

Then we need any field that can be serialized by Unity inside the key class. The

system will automatically detect the first serializable field and use it, if nothing is

found it will fallback on drawing it as a regular generic key.

Now for the dictionary to work correctly we need to override the functions Equals

and GetHashCode so that the comparison of keys can be executed correctly. Inside

this function we will implement any logic that we want to be used to identify that

they keys are the same.

12 | P a g e

Note that this step is required otherwise the keys will be compared by reference

and not by the value set on the inspector, which means that unless you use a direct

reference of the key it will always return false (the key not found on the

dictionary).

