#ifndef PCOMMON_INCLUDED #define PCOMMON_INCLUDED sampler2D _NoiseTex; float NoiseTexFrag(float2 uv) { return tex2D(_NoiseTex, uv).r*2 - 1; } float NoiseTexVert(float2 uv) { return tex2Dlod(_NoiseTex, float4(uv.xy, 0, 0)).r*2 - 1; } float2 GradientNoise_dir(float2 p) { p = p % 289; float x = (34 * p.x + 1) * p.x % 289 + p.y; x = (34 * x + 1) * x % 289; x = frac(x / 41) * 2 - 1; return normalize(float2(x - floor(x + 0.5), abs(x) - 0.5)); } float GradientNoise(float2 p) { float2 ip = floor(p); float2 fp = frac(p); float d00 = dot(GradientNoise_dir(ip), fp); float d01 = dot(GradientNoise_dir(ip + float2(0, 1)), fp - float2(0, 1)); float d10 = dot(GradientNoise_dir(ip + float2(1, 0)), fp - float2(1, 0)); float d11 = dot(GradientNoise_dir(ip + float2(1, 1)), fp - float2(1, 1)); fp = fp * fp * fp * (fp * (fp * 6 - 15) + 10); return lerp(lerp(d00, d01, fp.y), lerp(d10, d11, fp.y), fp.x); } float InverseLerpUnclamped(float a, float b, float value) { //adding a==b check if needed return (value - a) / (b - a + 0.00000001); } float RandomValue(float seed) { return frac(sin(dot(float2(seed, seed+1), float2(12.9898, 78.233)))*43758.5453); } float RandomValue(float x, float y) { return frac(sin(dot(float2(x, y), float2(12.9898, 78.233)))*43758.5453); } float2 VoronoiRandomVector (float2 UV, float offset) { float2x2 m = float2x2(15.27, 47.63, 99.41, 89.98); UV = frac(sin(mul(UV, m)) * 46839.32); return float2(sin(UV.y*+offset)*0.5+0.5, cos(UV.x*offset)*0.5+0.5); } float Voronoi(float2 UV, float AngleOffset, float CellDensity) { float2 g = floor(UV * CellDensity); float2 f = frac(UV * CellDensity); float t = 8.0; float3 res = float3(8.0, 0.0, 0.0); float noiseValue = 0; for(int y=-1; y<=1; y++) { for(int x=-1; x<=1; x++) { float2 lattice = float2(x,y); float2 offset = VoronoiRandomVector(lattice + g, AngleOffset); float d = distance(lattice + offset, f); if(d < res.x) { res = float3(d, offset.x, offset.y); noiseValue = res.x; } } } return noiseValue; } float2 PanUV(float2 uv, float2 speed) { return uv + _Time.y*speed; } half IsOrtho() { return unity_OrthoParams.w; } half GetNearPlane() { return _ProjectionParams.y; } half GetFarPlane() { return _ProjectionParams.z; } float SqrDistance(float3 pt1, float3 pt2) { float3 v = pt2 - pt1; return dot(v,v); } half TriangleWave(half In) { return 2.0 * abs(2 * (In - floor(0.5 + In))) - 1.0; } half RandomValueHalf(half x, half y) { return frac(sin(dot(half2(x, y), half2(12.9898, 78.233))) * 43758.5453); } half ValueNoiseInterpolate(half a, half b, half t) { return (1.0 - t) * a + (t * b); } half ValueNoise(half2 uv) { half2 i = floor(uv); half2 f = frac(uv); f = f * f * (3.0 - 2.0 * f); uv = abs(frac(uv) - 0.5); half2 c0 = i + half2(0.0, 0.0); half2 c1 = i + half2(1.0, 0.0); half2 c2 = i + half2(0.0, 1.0); half2 c3 = i + half2(1.0, 1.0); half r0 = RandomValueHalf(c0.x, c0.y); half r1 = RandomValueHalf(c1.x, c1.y); half r2 = RandomValueHalf(c2.x, c2.y); half r3 = RandomValueHalf(c3.x, c3.y); half bottomOfGrid = ValueNoiseInterpolate(r0, r1, f.x); half topOfGrid = ValueNoiseInterpolate(r2, r3, f.x); half t = ValueNoiseInterpolate(bottomOfGrid, topOfGrid, f.y); return t; } float SampleVertexNoise(float2 uv) { return NoiseTexVert(uv); } float SampleFragmentNoise(float2 uv) { return NoiseTexFrag(uv); } void CalculateNormal(float4 v0, float4 v1, float4 v2, inout float3 normal) { float4 dir0 = v1 - v0; float4 dir1 = v2 - v0; normal = normalize(cross(dir0.xyz, dir1.xyz)); } #endif