DeltaVR/3d-generation-pipeline/start_pipeline.py

48 lines
1.4 KiB
Python

import os
import argparse
from pathlib import Path
from datetime import datetime
from dotenv import load_dotenv
from cloudflare_api import text_to_image, refine_text_prompt
from generate_model_local import image_to_3d_api, image_to_3d_subprocess
load_dotenv()
PIPELINE_FOLDER = os.environ["PIPELINE_FOLDER"]
def get_timestamp():
return datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
def main():
parser = argparse.ArgumentParser(description="Text to 3D model pipeline")
parser.add_argument("--prompt", type=str, required=True, help="User text prompt")
args = parser.parse_args()
input_prompt = args.prompt
print(f"Input prompt: {input_prompt}")
refine_prompt = os.environ["REFINE_PROMPT"] == "1"
if refine_prompt:
image_generation_prompt = refine_text_prompt(input_prompt)
print(f"Refined prompt: {image_generation_prompt}")
else:
image_generation_prompt = input_prompt
timestamp = get_timestamp()
pipeline_folder = Path(PIPELINE_FOLDER)
image_path = pipeline_folder / "images" / f"{timestamp}.jpg"
text_to_image(image_generation_prompt, image_path)
print(f"Generated image file: {image_path}")
model_path = pipeline_folder / "models" / timestamp
image_to_3d_api(image_path, model_path)
#model_file_path = model_path / "0" / "mesh.glb"
print(f"Generated 3D model file: {model_path}")
if __name__ == "__main__":
main()