
24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 1/19

Manual

System requirements
Prerequisites
Installation
Quickstart
Render settings

Render mode
Full Lighting
Indirect
Shadowmask
Distance Shadowmask
Subtractive
Ambient Occlusion Only

Directional mode
None
Baked Normal Maps
Dominant Direction
RNM
SH
Limitations

Texels per unit
Max resolution
Bounces
Samples
GPU Priority
Render
Render Light Probes
Render Reflection Probes
Update Skybox Probe
Occlusion probes
Warnings

Advanced render settings
Light probe mode
Asset UV Processing
Denoiser
Adjust sample positions
Unload scenes before render
Denoise
Fix Seams
Split by scene

Contents

https://geom.io/bakery/wiki/index.php?title=File:Fdlm1200x630.png


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 2/19

Hole filling
Min resolution
Scale per map type
Checker preview
Emissive boost
Indirect boost
Backface GI
Ambient occlusion
RTX Mode
Export terrain trees
Terrain optimization
Samples multiplier
GI VRAM optimization
Tile size
Temp path
Output path
Use scene named output path
Render Selected Groups
Beep on finish

Experimental render settings
Unwrapper
Atlas Packer
Export geometry and maps
Update unmodified lights
Update modified lights and GI
UV padding: increase only
Denoise: fix bright edges
Combine with Enlighten real-time GI
Bake on remote server

Components
Bakery Lightmap Group Selector
Bakery Lightmapped Prefab
Bakery Direct Light
Bakery Sky Light
Bakery Light Mesh

Differences between Light Mesh and emissive materials
Bakery Point Light
Bakery Volume

Setting volume transform
Resolution
Other settings
Hints

Bakery Always Render
Bakery Pack As Single Square

Material compatibility
Albedo and emission
Opacity
Normal mapping
Front/back faces

Skinned mesh renderer support
Shader Tweaks
Bakery shaders

Standard render pipeline
HDRP & URP
Feature support across shaders

Notes on HDRP/URP
Upgrading Bakery
Scripting API

To use Bakery you'll need:

Windows (7 or higher) PC.
Nvidia GPU. Minimum supported model is Kepler (GeForce 650 or newer. For Quadro cards check the specs).
64-bit Unity editor. Bakery was tested on all versions from 5.6 to 2019.1.

System requirements are for developer machine, not target platform. You can use lightmaps baked with Bakery anywhere.

Make sure your project does not have any script compilation errors, as it will prevent Bakery scripts from compiling as well.
Make sure you have the latest GPU driver. Update it (https://www.nvidia.com/Download/index.aspx?lang=en-US) if needed.

System requirements

Prerequisites

https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://www.nvidia.com/Download/index.aspx?lang=en-US


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 3/19

Use the Game-Ready (standard) driver, not the "Studio" one.

1. Import Bakery to your project via Asset Store (https://assetstore.unity.com/packages/tools/level-design/bakery-gpu-lightmapper-122218).

2. Unity will show a list of files to import. If it's your first time using Bakery, it is recommended you just click Import. Experienced users may want to untick the

examples folder for a more lightweight installation.

Files will be imported to Assets/Bakery and Assets/Editor/x64/Bakery. These folders can be moved later.

3. Unity will then import Bakery and compile the scripts. It may show a window like this:

In which case you should click "Go Ahead".

You should now see Bakery menu added to the editor:

1. Add some model or primitive and mark it as Static.

Meshes must have non-overlapping UV for lightmapping. UV2 is used if present (otherwise UV1). If you did not unwrap models for
lightmapping, make sure to check Generate Lightmap UVs (https://docs.unity3d.com/Manual/LightingGiUvs-GeneratingLightmappingUVs.htm
l) on the asset. Unity primitives already have correct UV2.

2. Select Directional Light (the one Unity created for you) and add Bakery Direct Light component to it.

 Bakery and Unity use separate light source components.

3. Bakery Direct Light has many options to tweak, but you can easily match it to Unity light. Click Match lightmapped to real-time. Now Bakery light should have

the same yellowish color as Unity’s default Directional.

Installation

Quickstart

https://assetstore.unity.com/packages/tools/level-design/bakery-gpu-lightmapper-122218
https://geom.io/bakery/wiki/index.php?title=File:Goahead.png
https://geom.io/bakery/wiki/index.php?title=File:Bmenu.jpg
https://docs.unity3d.com/Manual/LightingGiUvs-GeneratingLightmappingUVs.html
https://geom.io/bakery/wiki/index.php?title=File:Staticmarked.jpg
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=File:Matching.jpg


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 4/19

 Direct Light component may complain about project not using linear light intensity. The problem is that by default Unity applies
gamma correction to light source colors incorrectly (https://twitter.com/guycalledfrank/status/1001108508614553600). Correct mode
can be enabled by scripting (https://docs.unity3d.com/ScriptReference/Rendering.GraphicsSettings-lightsUseLinearIntensity.html), and
that’s what the “Fix” button does. If you already have many light sources set up in non-linear intensity mode, and you don’t want to
change them again, you may skip fixing. Even if you press “Fix”, you can always revert the change anytime.

4. To get shadowed ambient lighting, create Skylight (Bakery->Create->Skylight).

5. Select Skylight, give it some bluish color and click Match scene skybox to this light. This will make scene skybox match lighting exactly.

 Matching Unity skybox to Bakery skylight is optional but useful for correctness, as to ensure that visible environment and in-engine
reflection probes match baked lighting.

6. Click Bakery->Render Lightmap. By default, Full Lighting mode is active. It will bake both direct and indirect contribution from all lights. If you want to combine

real-time shadows with baked GI, change it to Indirect.

 Bakery may complain that you are using old gamma mode (https://docs.unity3d.com/Manual/LinearLighting.html) and suggest to
change it. If you care about quality of lighting, using Linear mode is highly recommended. You may ignore it if you already have a big
project set up with incorrect gamma and don’t want to change it or when shipping to mobile devices that don't support it.

7. Click Render.

https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://twitter.com/guycalledfrank/status/1001108508614553600
https://docs.unity3d.com/ScriptReference/Rendering.GraphicsSettings-lightsUseLinearIntensity.html
https://geom.io/bakery/wiki/index.php?title=File:Menusky.jpg
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=File:Skycomp.jpg
https://geom.io/bakery/wiki/index.php?title=File:Bakerywindow.jpg
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://docs.unity3d.com/Manual/LinearLighting.html


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 5/19

8. Done! You should now have baked GI:

All render settings can be accessed via Bakery->Render Lightmap. Settings are saved for every scene. The topmost option in Bakery window allows you to switch

between Simple, Advanced and Experimental settings, each succeeding mode revealing more tweakable options. Simple mode is enough for most scenes and it's a good

way to get started.

Defines the type of lightmaps to bake.

Complete direct and indirect lighting for all Bakery lights.

 On pre-2017.3 Unity versions if you have both Unity and Bakery components on the same object, you will need to disable Unity ones
manually to avoid double brightness. On newer versions real-time effects are automatically disabled for baked lights, as with built-in
lightmappers.

Basic mixed mode. It will look at the Baked Contribution selector on every light: if it’s set to Direct And
Indirect, the light is baked as in Full Lighting mode. If it’s set to Indirect Only, only indirect contribution (GI)

from this light is baked. In latter case you should keep both Unity and Bakery lights on the object, one giving

real-time direct contribution, and another for precomputed GI.

A more advanced mixed mode. It works by generating two types of lightmaps - one with baked color (as in Indirect mode), and another with shadows from static objects.

It has several benefits:

Real-time shadows can render only a handful of dynamic objects, instead of the whole scene.
Real-time and baked shadows blend together properly.
Real-time lights can render bump, specular and other surface effects, while still being occluded by high-quality baked shadows.

More details (https://docs.unity3d.com/Manual/LightMode-Mixed-Shadowmask.html)

Currently only Direct, Point and Spot lights can interact with shadowmasking (because they are the only types Unity supports in real-time). To enable this behaviour,

you must have both Unity and Bakery lights on the same object, with Baked Contribution set to Indirect and Shadowmask. Unmarked lights will be baked as in Indirect

mode.

Render settings

Render mode

Full Lighting

Indirect

Comparison of different render modes supported
by Unity

Shadowmask

https://geom.io/bakery/wiki/index.php?title=File:Bakedgi.jpg
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=File:Indirectonly.jpg
https://docs.unity3d.com/Manual/LightMode-Mixed-Shadowmask.html
https://geom.io/bakery/wiki/index.php?title=File:Image26.png


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 6/19

This checkbox is only visible if you chose shadowmask and simply toggles equally named setting (https://docs.

unity3d.com/Manual/LightMode-Mixed-ShadowmaskMode.html) in project’s Quality Settings. More details.

(https://docs.unity3d.com/Manual/LightMode-Mixed-DistanceShadowmask.html)

 Checkbox is not visible on Unity 5.6.x due to the lack of corresponding scripting API.
Instead you can toggle it in Window->Lighting->Mixed Lighting->Lighting Mode.

 On Unity versions < 2017.3 rendering Shadowmask lightmaps will clear the light
probes due to API limitations. They will need to be re-rendered again after bake. It
shouldn’t happen on newer versions.

Enables Subtractive (https://docs.unity3d.com/Manual/LightMode-Mixed-Subtractive.html) lighting mode.

This option does not do anything special to lightmaps and, in fact, works just like Full Lighting.

The only difference is that it also sets up real-time Unity lights to work with Subtractive mode (as it cannot be done through UI).

You will need to additionally set up global subtractive parameters (like the global shadow color) in Unity lighting window (https://docs.unity3d.com/Manual/GlobalIllu

mination.html#MixedLighting).

Only bakes AO. May be useful if you know what you're doing. Make sure to set up AO options.

Defines how directional information is baked. Standard lightmaps only store a single color per texel, while

directional lightmaps give shaders a hint of how lighting changes over a hemisphere around the texel. This data

is required to combine fully lightmapped areas with normal maps. Plugging it into the built-in Bakery shader

can also produce approximate specular response.

No directional data, single color per texel.

Still no directional data, but normal maps are taken into account when rendering the lightmap. There is no additional runtime overhead. Since lightmaps usually have

lower resolution than normal maps, the result may look blurry. Other problems include aliasing at distance due to lack of mipmapping and denoising step potentially

smudging the detail. To learn how to use custom shaders with procedural normals in this mode, read Normal Mapping section.

This mode is similar to what Enlighten and Progressive bake in Unity. It is compatible will most shaders, only generates one additional map and the runtime overhead is

minimal. The downside is that bump-mapping looks rather faint and gray-ish and can be quite different comparing to the same object under real-time lighting.

Based on Radiosity Normal Mapping technique originally invented for HL2 (slides (https://steamcdn-a.akamaihd.net/apps/valve/2004/GDC2004_Half-Life2_Shadin

g.pdf)) and later used in many games (e.g. Mirror’s Edge). It generates 3 HDR maps in total, being the most memory-demanding mode of all. Runtime overhead is still

relatively low. This mode is more precise than Dominant Direction. It is better at reproducing surface contrast and handling colored lights affecting normal maps from

different angles.

Left: completely baked light. Center: dynamic light
with baked GI. Right: capsule shadow, bump and
specular are dynamic, but cube shadow and GI
are baked.

When camera gets far away enough or if dynamic
shadows are disabled, the same scene will look
like this

Distance Shadowmask

Subtractive

Ambient Occlusion Only

Directional mode

Comparison of different directional modes

None

Baked Normal Maps

Dominant Direction

RNM

SH

https://geom.io/bakery/wiki/index.php?title=File:Smask22.jpg
https://docs.unity3d.com/Manual/LightMode-Mixed-ShadowmaskMode.html
https://docs.unity3d.com/Manual/LightMode-Mixed-DistanceShadowmask.html
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://docs.unity3d.com/Manual/LightMode-Mixed-Subtractive.html
https://docs.unity3d.com/Manual/GlobalIllumination.html#MixedLighting
https://steamcdn-a.akamaihd.net/apps/valve/2004/GDC2004_Half-Life2_Shading.pdf
https://geom.io/bakery/wiki/index.php?title=File:Image21.png
https://geom.io/bakery/wiki/index.php?title=File:Image6.png
https://geom.io/bakery/wiki/index.php?title=File:Image3.png


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 7/19

Based on “Precomputed Global Illumination in Frostbite” paper (https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc2018-precomputedgiobalillu

minationinfrostbite.pdf). This is the highest quality mode, giving much better surface contrast and representing differently colored lighting coming from different

directions. Generates 4 maps in total, only one of them being HDR, therefore takes less memory than RNM. Runtime overhead is slightly higher than that of RNM.

RNM and SH can be only used with Bakery shader or require adjustments to your shaders.
In RNM and SH modes, standard color lightmaps are not created. You need to either have Bakery shader on all materials in the scene, or use Lightmap Groups to
separate RNM/SH objects from the rest.
RNM and SH maps are applied to objects using MaterialPropertyBlock (https://docs.unity3d.com/ScriptReference/MaterialPropertyBlock.html) and so may be not
shown completely in Unity’s Lighting window.
Dominant Direction, RNM and SH modes may require slightly more samples for GI and Light Meshes to get comparable quality.

Approximate amount of lightmap texels per world unit. Affects the amount and resolution of generated

lightmaps.

Example values to get you started:

Large outdoor area (a city): 1 - 5
Medium outdoor area (a few alleys): 10-20
High quality interior: 100

It is assumed that scene scale is roughly 1 unit = 1 meter. Such scale is generally recommended when working

in Unity for better navigation and for physics simulation. If your scale is different, multiply Texels accordingly.

Keep in mind that Texels Per Unit is base resolution, but every object can be additionally tweaked using Scale in Lightmap (https://docs.unity3d.com/Manual/class-Me

shRenderer.html) option on Mesh Renderers as well as Scale per map type in Bakery window.

 Objects with Scale in Lightmap set to 0 will not be baked, but will still cast shadows and affect GI.

Maximum lightmap size limit. If objects can't fit in a single lightmap (given current Texels Per Unit value), additional lightmaps will be allocated. Same 4 square objects

can take four 512x512 maps or one 1024x1024.

Defines how many times light rays should bounce off surfaces. Usually lower values are sufficient for outdoor

scenes (e.g. a city), while higher values are required for more closed scenes (interiors, caves).

Affects quality of GI. Typical values are from 16 to 32.

While GPU is working on lightmaps, OS and other software may become less responsive. This option allows you

to balance between baking speed and system responsiveness.

Bakes lightmaps for all opened scenes. If Light Probe Mode is set to L1, also bakes light probes.

Bakes light probes (https://docs.unity3d.com/Manual/LightProbes.html) for all opened scenes.

Note that to get correct mixed light shadowing on dynamic objects in Shadowmask mode you also need to enable occlusion probes.

Bakes reflection probes (https://docs.unity3d.com/Manual/class-ReflectionProbe.html) for all opened scenes. This button is just for convenience and will call built-in

engine reflection probe update.

Limitations

Texels per unit

1 vs 10 texels per unit

Max resolution

Bounces

Note how more bounces bring more light to
closed spaces.

Samples

Left: samples = 4, right: sample = 16. Denoising is
off for illustrative purposes.

GPU Priority

Render

Render Light Probes

Render Reflection Probes

Update Skybox Probe

https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc2018-precomputedgiobalilluminationinfrostbite.pdf
https://docs.unity3d.com/ScriptReference/MaterialPropertyBlock.html
https://docs.unity3d.com/Manual/class-MeshRenderer.html
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://docs.unity3d.com/Manual/LightProbes.html
https://docs.unity3d.com/Manual/class-ReflectionProbe.html
https://geom.io/bakery/wiki/index.php?title=File:Texelscomp.jpg
https://geom.io/bakery/wiki/index.php?title=File:Image36.png
https://geom.io/bakery/wiki/index.php?title=File:Image7.png


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 8/19

Bakes global diffuse and reflection probe for the current skybox. As with "Render Reflection Probes", it just calls built-in engine functions.

When "Render Light Probes" is pressed, lets Unity bake occlusion probes using currently selected built-in lightmapper. Occlusion probes is additional data stored inside

regular light probes, and it prevents dynamic objects from getting lit in shadowed areas. Currently there is no way to use custom occlusion probes in Unity, and it has to

call its own lightmappers instead to do the job.

These options will validate the scene after one of the Render buttons is pressed and show warning dialog boxes asking to continue or stop the baking process.

UV validation: will check if all models have fully correct lightmapping UVs - specifically if they lie within 0-1 range and don’t overlap.
Overwrite check: will tell which lightmap files are going to be overwritten.
Memory check: will tell a very approximate amount of video memory required.
Sample count check: will check if any lights, GI or AO have unreasonable sample counts that can make GPU go out of available resources.
Lightmapped prefab validation: validates Lightmapped Prefabs and notifies if some prefabs are going to be overwritten.

Changes the way light probes are baked.

Legacy: use Render Light Probes button to generate the probes. Point and directional lights are calculated within the lightmapper, while area/sky/indirect lighting is
gathered by rendering a cubemap at each probe position. Results are stored as L2 spherical harmonics (https://docs.unity3d.com/ScriptReference/Rendering.Sphe
ricalHarmonicsL2.html). The downsides are slow cubemap rendering performance and possible mismatch between lightmaps and probes in cases where shaders
in your game do not physically represent lit surfaces or your project is set up for mobile (Unity can clip high intensity values away).
L1: light probes will be rendered together with lightmaps when you click Render. This option provides superior baking performance and will guarantee that probe
lighting matches the lightmaps. Results are stored as L1 spherical harmonics (can be still used by regular shaders). Results can be further improved by using Non-
Linear Light Probe SH option in Bakery shader.

There seems to be a bug in Unity 2019.3 preventing Legacy light probe colors from being properly saved IF occlusion probes option is enabled. L1
mode is now default and recommended when using occlusion probes. Legacy mode will be soon deprecated and replaced with a new L2 mode
based on L1.

Configures UV padding adjustment for assets. Possible values:

Don't change: don't touch the assets.
Adjust UV padding: will look for models with auto-generated UVs (“Generate Lightmap UVs” on the asset) and adjust them further to have proper padding between
UV islands per-mesh. Model-wide Pack Margin in importer settings is ignored. Optimal values are calculated instead, given area of each mesh and lightmap
resolution.
Remove UV adjustments: reverts all previous UV adjustments, makes auto-unwrapped models look they way Unity originally unwrapped them.

Sets the desired denoiser. Possible values:

Optix 5: uses OptiX 5.1 AI denoiser (previously known as "Legacy denoiser"). Runs on the GPU. Supported on everything from Kepler (https://en.wikipedia.org/wiki/
Kepler_(microarchitecture)) (typically GeForce 6xx) to Turing (https://en.wikipedia.org/wiki/Turing_(microarchitecture)) (typically Geforce 20xx). Not supported on
Ampere (https://en.wikipedia.org/wiki/Ampere_(microarchitecture)) (30xx). OptiX 5.1 uses a static training dataset which is embedded into it, meaning it is not
affected by the driver implementation.
Optix 6: uses OptiX 6.0 AI denoiser (previously the default option). Runs on the GPU. Seems to fail on Kepler (6xx) GPUs, but runs on everything newer, including
Ampere (30xx). Since 6.0 the training dataset for the OptiX denoiser is in the driver. Before driver v442.50 its behaviour was similar to OptiX 5.1; however, after it
NVIDIA has changed the dataset (https://forums.developer.nvidia.com/t/optix7-denoiser-different-results-with-different-version-of-drivers/117989/2), and results can
be different. The updated dataset may sometimes produce grid-like patterns and more bright edges (still fixable with "Denoise: fix bright edges"), but it runs faster.
Optix 7: uses OptiX 7.2 AI denoiser. Behaves similarly to OptiX 6.0, but might be better supported on Ampere (30xx).
OpenImageDenoise: uses Intel Open Image Denoise library. Runs on the CPU (any CPU that supports SSE 4.1). Can be slightly slower than OptiX, but the quality
is comparable.

Find best sample positions to prevent lighting leaks. Details of the algorithm are outlined here (https://ndotl.wordpress.com/2018/08/29/baking-artifact-free-lightmap

s/#leaks). In some cases (usually large and very low poly geometry with smooth normals) it may produce incorrect results, in which case you can disable it.

Unloads Unity scenes before baking to free up video memory. Complex scenes can take a few gigabytes of VRAM by simply being shown in editor.

Occlusion probes

Warnings

Advanced render settings

Light probe mode

Asset UV Processing

Denoiser

Adjust sample positions

Unload scenes before render

https://docs.unity3d.com/ScriptReference/Rendering.SphericalHarmonicsL2.html
https://en.wikipedia.org/wiki/Kepler_(microarchitecture)
https://en.wikipedia.org/wiki/Turing_(microarchitecture)
https://en.wikipedia.org/wiki/Ampere_(microarchitecture)
https://forums.developer.nvidia.com/t/optix7-denoiser-different-results-with-different-version-of-drivers/117989/2
https://ndotl.wordpress.com/2018/08/29/baking-artifact-free-lightmaps/#leaks


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 9/19

If enabled, will apply denoising algorithm. Bakery uses Nvidia’s AI denoiser (https://developer.nvidia.com/opti

x-denoiser).

If enabled, will attempt to blend seams created by UV discontinuities. Useful for smooth geometry, including

Unity’s default sphere.

If multiple scenes are loaded at once, and this option is enabled, each scene will have its own set of lightmaps,

not shared with others. It can be useful for limiting the amount of textures loaded when scenes are streamed at

runtime.

If Atlas Packer is set to xatlas, will try to fill every hole, resulting in more efficient atlases. For scenes with very

complex geometry it can increase scene export time, but otherwise recommended.

Minimum lightmap size limit. Can be used to balance between many small but fully occupied lightmaps vs few

incompletely filled.

Allows you to scale the resolution of color/shadowmask/direction maps differently. For example, a common

case would be to have low resolution indirect color but highly detailed shadowmask. Note that scaling is applied after the lightmaps are rendered, so it won’t save baking

time. If “Adjust UV padding” is on, padding will be based on the lowest resolution map to prevent texel leaking.

If Show checker checkbox is on, Scene View will render a checkerboard pattern on top of visible objects to

demonstrate lightmap texel size. This is useful to make sure you are using adequate values for Texels Per Unit

and other resolution-affecting settings before you bake.

Enabling checker preview will force Bakery to perform atlas packing. It can take some time, but shouldn’t be

longer than a few seconds. Press Refresh checker to re-atlas the scene after you changed something to see

changes.

Checker preview also uses random colors to show how the scene will be split into different lightmaps.

 Checker preview currently does not show correct texel sizes for Terrains.

Multiplies any surface emission by this number.

Multiplies all bounced lighting by this number. Same as Indirect Intensity on light components, but global.

Determines how much light is passed through front faces to back faces and then bounced off by GI. This is

especially useful for thin translucent surfaces like leaves. Values are in 0-1 range.

Simple non-physical ambient occlusion you can apply over final scene lighting for aesthetic purposes.

Intensity: controls visibility of the AO effect. Value of 0 disables the effect.

Denoise

Left: denoising off, right: denoising on.Fix Seams

Left: seams, right: seams are fixed.

Split by scene

Hole filling

Hole filling off vs on.

Min resolution

Scale per map type

Checker preview

Checker preview in action

Emissive boost

Indirect boost

Backface GI

Backface GI

Ambient occlusion

https://developer.nvidia.com/optix-denoiser
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=File:Image31.png
https://geom.io/bakery/wiki/index.php?title=File:Image22.png
https://geom.io/bakery/wiki/index.php?title=File:Holefilling.jpg
https://geom.io/bakery/wiki/index.php?title=File:Image12.png
https://geom.io/bakery/wiki/index.php?title=File:Image30.jpg


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 10/19

Radius: determines the ray distance used in the AO effect. Smaller values give localized occlusion
(corners, wrinkles), while larger values make it more similar to Skylight, giving shadows from distant
objects.
Samples: affects the quality of ambient occlusion. Typical values are from 4 to 32.

Enables RTX hardware acceleration. Only RTX GPUs will benefit from this option. Minimum supported driver

version is 418.

Drivers can emulate RTX mode on most non-RTX Nvidia cards, but the result is usually slower.

If enabled, painted terrain trees will affect lighting. Trees themselves will not be baked. Note that highest

possible LOD level is used for every tree during baking. It is not recommended to use this option for rendering

multi-kilometer forests with highly detailed models.

If enabled (default), Terrains use separate ray tracing technique to take advantage of their heightfield geometry. Otherwise they are treated like any other mesh. Terrain

optimization significantly reduces memory footprint required for high-resolution landscapes. In some cases it can also make terrain baking faster, in other cases

(especially with simple low-resolution landscapes) it might make sense to disable it.

Multiplies all shadow and GI samples by the specified factor. Use it to quickly change between draft and final quality.

Toggles memory optimization used for very large scenes, especially when baking too many lightmaps at once. If enabled, may slow down rendering a little bit. If

disabled, and the scene is too big, Bakery may go out of memory.

Auto: guess if optimization is needed based on open scenes. The guess is only approximate, so if you know the scene is huge, set it to Force On.
Force On: always enabled.
Force Off: always disabled.

Same as GPU Priority, but instead of abstract priority you set tile size. Bakery splits lightmaps into smaller tiles and updates one at a time. Smaller size means more GPU

work interruptions, and can make system more responsive.

Temporary files folder. Bakery may require a few gigabytes of free space during rendering. Having this folder on SSD can make rendering slightly faster comparing to

HDD. At the moment, this folder is not cleaned automatically. You can delete its contents anytime (except during rendering).

Lightmap folder. This is where all lightmap, and also lightprobe and vertex color assets will be saved. This path is relative to your Assets folder.

If this option is enabled, output path will be automatically set to a folder with the same name as the currently active scene (Assets/CurrentSceneName/). This is similar

to how built-in Unity lightmappers behave.

Only bakes Lightmap Groups containing selected objects. Not only selected objects will be redrawn, but all Lightmap Groups they belong to. Other lightmaps will not be

updated. If objects are not a part of some manually assigned group, then a part of the scene using the same lightmap will be rebaked.

If enabled, Bakery will play a sound when the bake is finished.

Left: backface GI = 0, right: backface GI = 1. Note
how shadowed areas receive more green lighting.

Left: AO intensity = 0. Right: AO intensity = 1.

RTX Mode

Export terrain trees

Terrain optimization

Samples multiplier

GI VRAM optimization

Tile size

Temp path

Output path

Use scene named output path

Render Selected Groups

Beep on finish

https://geom.io/bakery/wiki/index.php?title=File:Image35.png
https://geom.io/bakery/wiki/index.php?title=File:Image15.png


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 11/19

If Adjust UV Padding is enabled, defines the unwrapper that will be used.

Default: standard Unity unwrapper. Bakery will call Unwrapping.GenerateSecondaryUVSet (https://docs.unity3d.com/ScriptReference/Unwrapping.GenerateSecond
aryUVSet.html) for every mesh with different padding parameters.
xatlas: uses xatlas (https://github.com/jpcy/xatlas) by jpcy (https://github.com/jpcy), a modified version of thekla_atlas (https://github.com/Thekla/thekla_atlas) by
Ignacio Castaño (https://github.com/castano). thekla_atlas was used in The Witness (blog post (http://the-witness.net/news/2010/03/graphics-tech-texture-paramet
erization/)).

Selects the algorithm to use when packing different object UV layouts into large lightmap atlases.

Default: original algorithm Bakery used before v1.7.
xatlas: uses xatlas.

Some features are only supported with one atlas packer:

Default xatlas

Override resolution Yes No

Efficient LOD packing No Yes

Hole filling No Yes

Note that atlas packer can be also chosen separately for every Lightmap Group.

If enabled, Bakery will export the scene to its format before rendering. If you are sure that geometry and textures of the scene and lightmap resolution settings were not

changed (e.g. you are only tweaking GI or light settings), you can disable this checkbox to make next rendering faster.

If enabled, Bakery will recalculate light sources that didn’t change since last rendering. If you are only tweaking one light and don’t want to wait for other lights to re-

render, you can disable this checkbox.

If enabled, Bakery will recalculate GI and lights that were changed since last rendering.

Only visible if Adjust UV padding is on. By default, optimal UV padding for a model asset is calculated only based on currently loaded scenes. If there are multiple

instances of the same model using different lightmap resolution, the smallest one will define padding, so spacing between UV charts is large enough to prevent them

from leaking over each other. However, baking the same model in 2 different isolated scenes will possibly break UVs in previous scenes while optimizing for the new

one. This checkbox allows to prevent such behaviour by never decreasing the padding value, so it will be always optimized for the lowest resolution instance ever baked.

Only visible if Denoise is on. Sometimes the neural net used for denoising may produce bright edges around

shadows, like if a sharpening effect was applied. If this option is enabled, Bakery will try to filter them away.

Denoising stage may get slightly slower, when enabled.

This feature may also be used to filter "fireflies", i.e. occasional bright dots from the lightmap.

If enabled, then when the Render button is pressed, it will first try to bake with Enlighten to calculate real-time

GI. After that, regular Bakery lightmapping process will happen. Both baked and real-time GI will work together.

Enables network baking.

Experimental render settings

Unwrapper

Atlas Packer

Export geometry and maps

Update unmodified lights

Update modified lights and GI

UV padding: increase only

Denoise: fix bright edges

Left: a bright edge is visible after denoising; Right:
fixed.Combine with Enlighten real-time GI

Bake on remote server

Components

https://docs.unity3d.com/ScriptReference/Unwrapping.GenerateSecondaryUVSet.html
https://github.com/jpcy/xatlas
https://github.com/jpcy
https://github.com/Thekla/thekla_atlas
https://github.com/castano
http://the-witness.net/news/2010/03/graphics-tech-texture-parameterization/
https://geom.io/bakery/wiki/index.php?title=Network_baking
https://geom.io/bakery/wiki/index.php?title=File:Image19.png


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 12/19

Specifies which Lightmap Group to use for the object and all of its children. Lightmap Group is a term Bakery uses for a collection of objects sharing one lightmap.

Groups have properties telling Bakery how to pack the objects, which lights should affect them, should the result be baked into a texture or vertices. By default all static

objects are automatically packed into multiple lightmaps groups (atlases), so you don’t have to worry. Defining groups manually should be only used for special

purposes, for example:

Marking certain objects use per-vertex lightmap instead of textures.
Baking a lightmap using exact unscaled UVs as they were in a modeling package.
Grouping certain areas of the level to use single lightmap to facilitate resource streaming or to switch different baked lighting at runtime via scripts.
Using Render Selected button to only update grouped objects.

To manually define a group, you create Lightmap Group Assets, either by using Assets->Create menu, or using the Create New button in the component. When using

the Create New button, new asset will be created based on these forms:

Name: name of the Lightmap Group Asset to create.
Packing mode: this selector defines the packing mode of the Lightmap Group. There are 3 modes:

Original UV: object and its children will be baked with unmodified UVs. No packing is performed. This is useful for models when multiple meshes share the
same already packed UV layout.
Pack Atlas: object and its children are packed into a dedicated texture atlas. Before v1.3 every packable child needed to have the component, but it’s no longer
necessary. Every child will be packed as its own rectangle, except when Bakery auto-detects a child having non-overlapping sub-children, in which case
multiple objects can use a single rectangle.
Vertex: object and its children will use vertex-colored baked lighting instead of textures. Note that you’ll need a custom shader for this to work, like Bakery
Shader. One simple shader ("Bakery/Simple Vertex Lightmapped") is also included for demonstration and reference. Learn more about vertex lightmaps.

Directional mode: allows you to override directional mode on the group. Options are the same except for Auto, which will simply use the global setting.
Resolution: desired lightmap resolution.
Atlas packer: select atlas packing algorithm for this group.
Bitmask: a list of toggles used to exclude light sources from affecting the lightmap. Every Bakery light source also has a bitmask setting. Lights only affects
Lightmap Groups with which they share at least one of these toggles. Default settings mean all lights affect all lightmaps.

If you have a Lightmap Group with the Pack Atlas mode assigned, additional settings will appear on the

component:

Override resolution: override the resolution this object and its children occupy in the lightmap.
Resolution: manually defined resolution. For example, if you have a lightmap with a resolution of 512 and it
is assigned to 4 objects with override resolution set to 256, Bakery will generate a single 512x512 lightmap
where each object takes exactly 256x256 square.

If you select a Lightmap Group asset, additional experimental settings will be visible:

Subsurface scattering: (click to read more)
Normal offset: allows you to offset rays from the surface. This is rarely useful and mostly present for
experimental purposes.
Transparent selfshadow: start rays behind the surface so it doesn't cast shadows on self. Might be useful for translucent foliage.

This component allows prefabs to store lightmapping metadata. Such prefabs can be then instantiated in any scene, both in editor and at runtime. The component

should be added directly to the root object of the prefab. Nested prefabs are not supported. Because the prefab is going to be overwritten after bake (the same way as

when the “Apply” button is pressed), it is required that the prefab does not have any unapplied changes (child objects shouldn’t be moved, materials and script

parameters should be unchanged, etc). If such changes are detected, an error will be printed in the component UI and no metadata will be saved after bake. If

Lightmapped prefab validation warning is enabled, all prefab errors will be also shown in a dialog box before the bake.

Lightmapped prefabs support all Bakery features, such as LODs, terrains, directional lightmaps, RNM, SH, per-vertex modes and shadowmasks. For shadowmasks to

work, you need lights to also be a part of the same prefab.

 Note that prefab shadowmasks only work on Unity 2017.4 or newer due to API limitations.

After baking, an object named “BakeryPrefabLightmapData” will be added to prefab. This object holds a script with all necessary data to apply the lightmaps.

Additionally, Lightmapped Prefab allows to save current render settings and load them back to any currently open scene, using two buttons:

Save current render settings to prefab: stores a copy of current Render Settings on this prefab.
Load render settings from prefab: sets current Render Settings to those stored on the prefab.

Infinitely distant directional light (e.g. Sun).

Color: color.
Intensity: linear color multiplier.
Shadow spread: size of the light source or, simply put, shadow blurriness. 0 = max sharp shadows, 1 = max blurred shadows. Technically it interpolates from a
single ray to a wider cone of rays.
Shadow samples: affect shadows quality. The smaller the Shadow Spread value, the less samples are needed for a clean image. Typical values for sun shadows
are from 1 to 16. Setting samples to 0 will make shadows from this light disappear.
Bitmask: a list of toggles used to exclude this light source from affecting particular Lightmap Groups.
Baked contribution: determines what kind of lighting data should be baked. Only visible in Indirect or Shadowmask modes. Possible values:

Direct and Indirect: both direct and indirect contribution will be completely baked.
Indirect only: a realtime light is supposed to provide direct contribution; only indirect lighting is baked.

Bakery Lightmap Group Selector

Transparent selfshadow OFF vs ON: note how
some single-sided but back-facing polygons
become properly lit

Bakery Lightmapped Prefab

Bakery Direct Light

https://geom.io/bakery/wiki/index.php?title=Vertex_Lightmaps
https://geom.io/bakery/wiki/index.php?title=Vertex_Lightmaps
https://geom.io/bakery/wiki/index.php?title=Subsurface_scattering
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=File:Ts.jpg


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 13/19

Indirect and Shadowmask: a realtime light is supposed to provide direct contribution, but shadows from
static geometry will be baked to a separate map. Dynamic and static shadows will be mixed together.
Indirect lighting will be baked as usual.

Denoise shadowmask: determines if denoising should be applied to this light’s shadowmask. Usually it’s
not necessary as shadows don’t exhibit much noise, but can be useful for very wide blurry shadows (large
shadow spread).
Indirect intensity: non-physical GI multiplier for this light. Should be 1 for natural lighting, but can be
modified for more stylized scenes.
Texture projection: projects a multiplicative tiled texture over lighting. Can be used to emulate distant cloud
shadows.

If the same object has both Unity and Bakery light sources enabled, and they don’t match, two buttons will

appear:

Match lightmapped to real-time: copy common settings from Unity light to Bakery light.
Match real-time to lightmapped: copy common settings from Bakery light to Unity light.

Infinitely distant shadowed ambient light (sky).

Color: color.
Intensity: linear color multiplier.
Sky texture: optional cubemap asset, e.g. HDRI panorama to affect lighting colors from different directions.

 Rotating sky light’s GameObject will rotate lighting from the cubemap accordingly.

Samples: affects shadows quality. Typical values are from 8 to 32.
Hemispherical: if enabled, lighting will only come from above (upper hemisphere). Otherwise from all
directions.
Bitmask: a list of toggles used to exclude this light source from affecting particular Lightmap Groups.
Baked contribution: determines what kind of lighting data should be baked. Only visible in Indirect or
Shadowmask modes. Possible values:

Direct and Indirect: both direct and indirect contribution will be completely baked. This is the default
and recommended behaviour for all Sky Lights, as there is no real-time version to emulate them in
Unity.
Indirect only: a realtime light is supposed to provide direct contribution; only indirect lighting is baked.

If sky light’s settings and current scene skybox don’t match, two buttons will appear:

Match this light to scene skybox: copy common settings from active skybox material to Bakery sky light. Currently it can only match skyboxes using the
“Skybox/Cubemap” or “Skybox/Bakery skybox” shaders.
Match scene skybox to this light: copy common settings from Bakery sky light to scene skybox.

Emissive mesh of any shape. Should be used together with the Mesh Renderer component or with a Light

component set to Area mode.

Color: color
Intensity: linear color multiplier.
Cutoff: maximum lighting distance. Bakery will additionally attenuate correct inverse-squared falloff near
the limit. It works best when cutoff value is just where physical falloff gets very dim. Cutoff can improve
baking performance, but you also can set it to a very high (unreachable) value for complete correctness.
Self Shadow: determines if light mesh itself casts shadows. This option also enables a more precise
lighting algorithm.
Samples Near: affect lighting quality near the mesh. Typical values are from 16 to 64. This option is only
available when Self Shadow is on.
Samples Far: affects lighting quality far away from the mesh. Typical values are from 4 to 4096.

Bakery mixes two different algorithms for area lights based on emissive surface proximity. Close to the light it works similar to the GI algorithm, while at a distance the

light is approximated as a cloud of virtual point lights.

Light Meshes don’t receive lighting on their own and don’t get lightmapped.
One Light Mesh with many polygons is faster to bake than many simple Light Meshes.
If you keep getting dirty/noisy results, try setting Samples Near to 0. Then only the VPL algorithm is used. It is also useful for very simple lights where precision
is not important (e.g. window lights on a building).

Bitmask: a list of toggles used to exclude this light source from affecting particular Lightmap Groups.
Baked contribution: determines what kind of lighting data should be baked. Only visible in Indirect or Shadowmask modes. Possible values:

Direct and Indirect: both direct and indirect contribution will be completely baked. This is the default and recommended behaviour for all Light Meshes, as there
is no real-time version to emulate them in Unity.
Indirect only: a realtime light is supposed to provide direct contribution; only indirect lighting is baked.

Indirect intensity: non-physical GI multiplier for this light. Should be 1 for natural lighting, but can be modified for more stylized scenes.

If mesh material and light settings do not match, two buttons will appear:

Match light to material: copy common settings from unlit mesh material or area light to Bakery light.
Match material to light: copy common settings from Bakery light to unlit mesh material or area light.

Pure direct light with GI

Left: shadow spread = 0.01, right: 0.05. Note how
shadows start sharp and get gradually blurrier
with distance.

Bakery Sky Light

Pure sky light with GI

Bakery Light Mesh

Left: Samples Near = 0, Samples Far = 4096. 
Middle: Samples Near = 0, Samples Far = 128. 
Right: Samples Near = 16, Samples Far = 128. 
Note how the lighting appearance is similar, yet
less combined samples are used.

https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=File:Directlight.jpg
https://geom.io/bakery/wiki/index.php?title=File:Image4.png
https://geom.io/bakery/wiki/index.php?title=File:Skylight.jpg
https://geom.io/bakery/wiki/index.php?title=File:Image29.png


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 14/19

Emissive material:

Propagates light during GI calculation, therefore is “free”, no matter how many meshes are emissive.
Small and bright lights can give inaccurate noisy results, depending on GI sample count.
Has to occupy space in lightmap due to the way GI in Bakery works, therefore possibly wasting it. Also it
means that emissive objects require valid UVs and have “Cast shadows” enabled..

Light Mesh:

Lighting is calculated separately for each light, therefore is slower than emissive materials.
Designed to give clean results for small and bright lights, even very far away from them.
Doesn’t take space in lightmaps.

Point light, doesn’t have area. Despite physical impossibility it is useful for games and the only way to match

Unity’s point and spot lights.

Spot lights are just point lights with additional projection mask.

Color: color.
Intensity: linear color multiplier.
Shadow spread: shadow blurriness. Although point lights don’t have area, it is often desired to still have
blurred shadows from them. For this purpose shadows are simulated as if they were cast from a spherical
area light. This parameter defines the radius of such virtual sphere, directly affecting blurriness.
Physical falloff: if enabled, will use correct inverse-squared falloff with additional attenuation near the limit. Otherwise will try to mimic Unity’s falloff.
Falloff min size: learn more in Point Light Attenuation section.
Range: if physical falloff is disabled, equals to Unity’s light range. If it’s enabled, will only slightly fade away physical falloff at the edge.
Samples: affects shadows quality. Typical values are from 1 to 512. Setting samples to 0 will make shadows from this light disappear.

Projection mask: type of mask/cookie. Options:

Omni: no mask, equals to Unity’s Point Light.
Cookie: cookie texture projection. Additional options:

Cookie texture: 2D texture asset. Bakery includes the original Unity’s Spot Light texture (named
ftUnitySpotTexture) that you can use to mimic it.
Angle: texture projection angle (similar to Unity’s Spot Light).

Cubemap: cubemap cookie projection. Additional options:

Projected cubemap: cubemap asset.
IES: lighting is modulated by the IES file data. Additional options:

IES file: file with .ies extension.

Bitmask: a list of toggles used to exclude this light source from affecting particular Lightmap Groups.
Baked contribution: determines what kind of lighting data should be baked. Only visible in Indirect or Shadowmask modes. Possible values:

Direct and Indirect: both direct and indirect contribution will be completely baked.
Indirect only: a realtime light is supposed to provide direct contribution; only indirect lighting is baked.
Indirect and Shadowmask: a realtime light is supposed to provide direct contribution, but shadows from static geometry will be baked to a separate map.
Dynamic and static shadows will be mixed together. Indirect lighting will be baked as usual.

Indirect intensity: non-physical GI multiplier for this light. Should be 1 for natural lighting, but can be modified for more stylized scenes.

If the same object has both Unity and Bakery light sources enabled, and they don’t match, two buttons will appear:

Match lightmapped to real-time: copy common settings from Unity light to Bakery light.
Match real-time to lightmapped: copy common settings from Bakery light to Unity light.

Volumes generate 3D textures that store light probes per voxel (L1 spherical harmonics and shadowmasks) making them a viable replacement for regular Unity light

probes.

A curved Light Mesh

Differences between Light Mesh and emissive materials

Bakery Point Light

Left: Shadow Spread = 0.5, right: Shadow Spread
= 1.

Left to right: Omni, Cookie (default spot texture),
Cubemap, IES.

Bakery Volume

https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=Point_Light_Attenuation
https://geom.io/bakery/wiki/index.php?title=File:Voldemo_notlonely.gif
https://geom.io/bakery/wiki/index.php?title=File:Dd99d-QU0AEKFBK.jpg
https://geom.io/bakery/wiki/index.php?title=File:Image11.png
https://geom.io/bakery/wiki/index.php?title=File:Image10.png


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 15/19

Unity Light Probes Unity LPPV Bakery Volumes

Manually placing each probe Yes Yes No

Interpolate multiple probes on one object No Yes Yes

Movable at runtime No No Yes

Can put in a prefab No No Yes

Full scripting API No No Yes

Ringing Possible Possible Fixed

Denoising No No Yes

Runtime overhead CPU: low; GPU: low. CPU: medium; GPU: medium. CPU: none; GPU: medium.

Bakery Volume is a bounding box linked to a set of 3D textures (3 SH textures and one shadowmask, if needed), making it very easy to use and script. Volumes can be

trivially swapped, moved, loaded or unloaded at runtime or linked to prefabs. They also do not need any Light Probe Groups and manual probe placement; the whole

volume is filled with a uniform grid of probe voxels. Light/shadow leaking is automatically fixed the same way it is done for lightmaps (although thin double-sided walls

may be a problem with large voxel size, but it can be avoided by using different volumes on different sides). Because of the uniform nature of voxel grids, it is also

possible to apply lightmap-like denoising to them, which is not possible with regular light probes. Additionally, Bakery shaders use the Geomerics sampling trick (http

s://web.archive.org/web/20160313132301/http://www.geomerics.com/wp-content/uploads/2015/08/CEDEC_Geomerics_ReconstructingDiffuseLighting1.pdf) to

completely get rid of the "ringing" artifact spherical harmonics can sometimes produce with high-contrast HDR lighting.

Because of that, Volumes can produce clean, detailed, high-quality baked lighting for dynamic objects (that is, the lighting that comes from the static objects and affects

dynamic objects, not the other way around).

The only downside of the Volume approach is the higher per-pixel shading cost. The cost is similar to LPPV (scaling with the amount of shaded volume-affected pixels

on the screen) but unlike LPPV, the Volumes themselves are never updated once they are baked. Multiple volume blending can be avoided by slightly overlapping them

instead.

When BakeryVolume is added to a GameObject, a bounding box gizmo will appear in scene view. Dragging it by

the little squares will scale it. There are also other ways to change volume size and position:

Drag any renderable GameObject into "Wrap to object" field. The volume will wrap around this object (and
its children) to encapsulate them.
If there is a Box Collider added to the same object, "Set from box collider" and "Set to box collider" buttons
will appear. These can be used to quickly copy values between Volume/Collider.

When "Adaptive resolution" is enabled, the amount of voxels is governed by "Voxels per unit". Disabling it

allows to manually enter the resolution. For most games with 1 unit = 1 meter, a reasonable "Voxels per unit"

value is 2, but there are cases (e.g. dynamic doors) when using a smaller, but higher resolution volume is

beneficial.

Enable baking: should the volume be (re)computed? Disable to prevent overwriting existing data.
Denoise: apply denoising after baking the volume.
Global: automatically assign this volume to all volume-compatible shaders, unless they have overrides. Internally it will call
Shader.SetGlobalTexture()/SetGlobalVector().

Make sure to check example_volumes_advanced scene.
If two volumes connect, make them overlap a bit. The size of the overlap should be equal to the size of the largest dynamic object. This way simply switching
between volumes on the go will work.
Only place volumes around areas dynamic objects can actually reach. E.g. use player height to limit volume height.

If added to an object, Bakery will always take it into account when baking, even if its renderer is disabled.

If added to an object, Bakery will treat UVs of this object and its children as a single combined square and never move them away from each other during automatic atlas

packing or in a Lightmap Group with Pack Atlas mode. Whole children hierarchy will be packed as one.

Material compatibility

Setting volume transform

Volume gizmo

Resolution

Other settings

Hints

Bakery Always Render

Bakery Pack As Single Square

Albedo and emission

https://web.archive.org/web/20160313132301/http://www.geomerics.com/wp-content/uploads/2015/08/CEDEC_Geomerics_ReconstructingDiffuseLighting1.pdf
https://geom.io/bakery/wiki/index.php?title=File:Bvolgizmo.jpg


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 16/19

Bakery supports most Unity materials by utilizing the Meta Pass (https://docs.unity3d.com/Manual/MetaPass.html) system. All built-in, surface, LWRP and HDRP

shaders already have a correct meta pass defined.

If you have an Unlit shader, add meta pass manually, as described in Unity docs.

If the pass is not present, Bakery will assume _MainTex, _BaseColorMap or _Color (if no texture is set) properties as material albedo and _EmissionMap and

_EmissionColor as emissive color.

In order for emission to work, Material.globalIlluminationFlags (https://docs.unity3d.com/ScriptReference/Material-globalIlluminationFlags.html) must be set to

MaterialGlobalIlluminationFlags.BakedEmissive (https://docs.unity3d.com/ScriptReference/MaterialGlobalIlluminationFlags.BakedEmissive.html). Standard shaders

set this value automatically.

Currently Bakery always takes full resolution opacity from the alpha value of _MainTex or _BaseColorMap
and treats it as cutout (1 bit tranparency).

In order for opacity to work, RenderType tag (https://docs.unity3d.com/Manual/SL-SubShaderTags.html) of

the shader must be one of these values:

Transparent
TransparentCutout
TreeLeaf

If a property named _Cutoff is present, it will affect the cutout (therefore Standard shader cutoff slider works

automatically).

If material RenderType is Transparent or TreeLeaf, then alpha value of _Color will additionally modify the

cutoff: finalCutoff = 1 - (1 - cutoff) * alpha

For translucency effects read about Backface GI and subsurface scattering.

 Tip: while Bakery does not support semi-transparent shadow casters at the moment,
you can still take advantage of stochastic transparency, that is: use noise texture with
different cutoff as alpha. Ray averaging and denoising will make it look semi-transparent.
Blue noise textures (http://momentsingraphics.de/BlueNoise.html) are recommended.

Custom surface normals can be used in conjunction with Baked Normal Maps mode. Unfortunately, Unity's Meta Pass does not output normal information, so by

default normals are taken from a texture named _BumpMap, additionally transformed by _MainTex_ST.

It is however possible to make completely custom shaders with advanced normal mapping features (e.g. blending multiple layers) compatible with baking. To do that

you'll need:

1. Define a Meta Pass in your shader, just as described in Unity docs (https://docs.unity3d.com/Manual/MetaPass.html#ExampleMetaPass).

2. Name it "META_BAKERY", instead of just "META".

3. Include "BakeryMetaPass.cginc".

4. Add #pragma vertex vert_bakerymt

5. If unity_MetaFragmentControl.z variable is not 0, shader should return world-space normal. Returned normal should be encoded using

BakeryEncodeNormal function.

Two example shaders implementing this extended Meta Pass are included in Assets/Bakery/examples/shaders.

You can copy and modify BakeryMetaPass.cginc to suit your needs, e.g. pass additional data from the vertex shader.

No matter what culling mode is used on the shader, Bakery treats all back-faces as opaque, meaning any direct light ray will not pass through a back-face, just as it will

not pass through a front-face. However, back-faces can partially emit lighting received by a front-face, if you use Backface GI.

Skinned mesh renderer support
Bakery supports skinned meshes since v1.65. However, there are some limitations:

Some versions of Unity do not support UV1 on skinned meshes and silently ignore "Generate lightmap UVs". Make sure the actual mesh used in your scene has
UV1 and use non-overlapping UV0 if possible;
UV padding adjustment does not work on skinned meshes (Unity seems to crash when attempting to call Unwrap function on them);
Skinned meshes can't have per-vertex lightmaps (engine has no support for additionalVertexStreams with skinning).

Shader Tweaks

Opacity

Material parameters converted to cutout

Using blue noise as alpha

Normal mapping

Front/back faces

https://docs.unity3d.com/Manual/MetaPass.html
https://docs.unity3d.com/ScriptReference/Material-globalIlluminationFlags.html
https://docs.unity3d.com/ScriptReference/MaterialGlobalIlluminationFlags.BakedEmissive.html
https://docs.unity3d.com/Manual/SL-SubShaderTags.html
https://geom.io/bakery/wiki/index.php?title=Subsurface_scattering
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
http://momentsingraphics.de/BlueNoise.html
https://docs.unity3d.com/Manual/MetaPass.html#ExampleMetaPass
https://geom.io/bakery/wiki/index.php?title=File:Upload_2019-1-25_0-4-30.png
https://geom.io/bakery/wiki/index.php?title=File:Stochasticalpha.jpg


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 17/19

Bakery offers optional shader modifications that can be applied to Unity shaders to improve lightmap sampling

and match real-time lighting closer to lightmaps. Shader tweaking menu can be accessed via Bakery->Shader

Tweaks.

These options will patch base Unity shader includes (from the CGIncludes folder) that are used by most built-in

and third party shaders. All modifications will affect all projects opened with this version of editor, but can be

also easily reverted back. Shader tweaks affect the way standard and surface shaders work. HDRP, LWRP and

other SRPs are not affected.

All available modifications are shown as buttons. Press the button to apply modification, and it will remain

pressed. Un-press the button to remove the modification. Currently available options:

 You may need to run Unity editor as admin to make CGIncludes patching work

Use bicubic interpolation for lightmaps: bicubic interpolation will be used instead of default bilinear. This
tweak fixes many jagged edges of low resolution lightmaps pretty well. Currently it only works on DX11 and
modern consoles, while other platforms will remain using bilinear.

Use multiplication for shadowmask: combine static and dynamic shadows using multiplication instead of
minimum. For reasons unknown Unity decided to use minimum operator by default, and it produces
artifacts that are not present with multiplication.

Use physical light falloff (forward): replace default attenuation of real-time point/spot lights with a more
physically correct inverse-squared. “Range” will only slightly fade it out near the edge (matches Bakery
lights with Physical Falloff checkbox). Only affects forward renderer. See Point Light Attenuation for more
details.

Use physical light falloff (deferred): same as above, but only affects deferred renderer.

Falloff tweaks may not fully work on > 2017 Unity versions. Also, SRPs have correct falloff by default.

Bakery shaders
Bakery includes its own shaders with support for vertex lightmapping, as well as RNM and SH directional modes. It also allows approximate baked specular to be

calculated from directional data. Bakery shader is not required for regular color lightmaps, shadow masks and Dominant Direction mode, as these features are

supported by most Unity shaders anyway.

Bakery/Standard: extends regular Standard shader. Additional options:

Allow Vertex Lightmaps: allows this material to be used with vertex lightmapping.
Allow RNM Lightmaps: allows this material to be used with RNM directional mode.
Allow SH Lightmaps: allows this material to be used with SH directional mode.

 All “Allow” toggles enable a certain code path in the shader. It is recommended to only use one “allow” option in a material for
performance reasons.

Enable Lightmap Specular: calculates baked specular using data from Dominant Direction, RNM or SH directional modes. Note that due to the lack of information,
the effect is very approximate. If you ever used baked specular in Unity 4, it should be comparable. It looks best together with highly perturbed normal maps, not so
good on flat surfaces.
Enable VertexLM directional: if vertex lightmaps are present, specifies that Dominant Direction data is stored in vertices and should be used.
Enable VertexLM SH: if vertex lightmaps are present, specifies that SH data is stored in vertices and should be used.
Enable VertexLM Shadowmask: if vertex lightmaps are present, specifies that shadow mask is stored in vertices and should be used.

Non-linear SH: in SH directional mode this option can enhance contrast (closer to ground truth), but it
makes the shader a bit slower. This trick is based on “Reconstructing Diffuse Lighting from Spherical
Harmonic Data” (https://web.archive.org/web/20160313132301/http://www.geomerics.com/wp-content/uplo
ads/2015/08/CEDEC_Geomerics_ReconstructingDiffuseLighting1.pdf) paper by Geomerics.
Non-linear Light Probe SH: similar to Non-linear SH, but works for light probes instead. In case of probes
the most notable benefit is getting rid of incorrect negative values. This problem often happens in high-
contrast scenes with bright HDR light sources. It’s an inherent limitation of spherical harmonics and not
specific to Bakery (i.e. you can get similar artifacts with built-in lightmappers as well).
Force Bicubic Filter: enables bicubic filtering for all additional maps. For complete bicubic filtering
(including the first color map) it is recommended to also enable it in Shader Tweaks.

Bakery/Standard Specular: same as Standard, but for specular workflow.

To extract additional HDRP/URP shaders, open Bakery_ShaderGraphHDRP.unitypackage or Bakery_ShaderGraphURP.unitypackage included with Bakery. Inside you

will find Shader Subgraphs that you can use in your own Shader Graphs as well as some example materials.

Left: default bilinear filtering. Right: bicubic
filtering.

Left: both shadows are baked. 
Center: spherical shadow is dynamic, and other
shadow is static. Combined together with
multiplication. 
Right: same as center, but combined with default
minimum.

Standard render pipeline

Standard SH light probe vs non-linear

HDRP & URP

Feature support across shaders

https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=Point_Light_Attenuation
https://geom.io/bakery/wiki/index.php?title=Vertex_Lightmaps
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://web.archive.org/web/20160313132301/http://www.geomerics.com/wp-content/uploads/2015/08/CEDEC_Geomerics_ReconstructingDiffuseLighting1.pdf
https://geom.io/bakery/wiki/index.php?title=File:Image2.jpg
https://geom.io/bakery/wiki/index.php?title=File:Image34.jpg
https://geom.io/bakery/wiki/index.php?title=File:Image5.png


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 18/19

Most Unity shaders
Most HDRP

& URP
shaders

Bakery Standard HDRP graphs URP graphs

HDR color
lightmaps Yes Yes Yes Yes Yes

Shadowmask Yes Yes Yes Yes No (URP does not support
shadow masks)

Dominant
Direction Yes Yes Yes Yes Yes

RNM No No Yes Yes Yes

SH No No Yes Yes Yes

Lightmap
specular No No Yes Yes for dominant direction and SH Yes for dominant direction (see

link)

Bicubic
filtering

Yes,

with Shader Tweaks No
Yes,

with Shader Tweaks No No

Vertex
lightmaps No No Yes

Single color, no per-vertex SH,
direction or shadowmasks
(shader graph limitation)

Single color, no per-vertex SH,
direction or shadowmasks (shader

graph limitation)

Non-Linear
Light Probes No No Yes No No

Volumes No No Yes Yes Yes

 Everything except for regular color lightmaps requires at least Shader Model 3.0 to work.

 Vertex Lightmaps with SH mode require at least Shader Model 4.0 due to interpolator limit.

 Updated URP graphs with specular from Dominant Direction can be downloaded here (https://drive.google.com/file/d/1rKnX-1SFEQ
jjrPzSztbyxmrjtszLGeut/view).

Notes on HDRP/URP
Once the package is imported into an HDRP or URP project, in general it can be used right away, but there are some things to note:

Example scenes use both regular Standard and, in some cases, "Bakery Standard" shaders. HDRP and URP provide a mechanism to update project shaders from
Standard to Lit, but they cannot upgrade from Bakery Standard. Replace Bakery Standard materials with the ones coming from
Bakery_ShaderGraphHDRP.unitypackage or Bakery_ShaderGraphURP.unitypackage.

In HDRP, the default HDRI sky intensity is high (11) and sky reflection is not being occluded by default. Together with default eye adaption it may result in some
example scenes being hardly visible, as they are baked using much lower intensities. Reduce HDRI sky intensity to 1 in this case.

Many HDRP projects use very high intensity values. This is undesirable for lightmap precision. Read this for more details.

Upgrading Bakery
When it comes to upgrading the asset, it is recommended to follow these steps:

Close Unity.
Open it again.
Import the updated package.

Note that without first closing Unity importing may fail because of locked DLL files.

If Unity still complains about not being able to overwrite DLL files, try closing Bakery windows/tabs, closing Unity and trying again.

If you moved Bakery folders (Assets/Bakery and Assets/Editor/x64/Bakery) to other locations, you might need to move them back before updating to prevent getting

two conflicting copies of the package.

Scripting API
Get and modify render settings:

ftLightmapsStorage storage = ftRenderLightmap.FindRenderSettingsStorage();

Full list of available settings can be seen in ftLightmapsStorage.cs.

Get lightmapper instance and (re)load settings:

ftRenderLightmap bakery = ftRenderLightmap.instance != null ? ftRenderLightmap.instance : new
ftRenderLightmap(); bakery.LoadRenderSettings();

Render lightmaps (also probes if they're set to L1 mode):

https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://geom.io/bakery/wiki/index.php?title=File:Bulbgraph.png
https://drive.google.com/file/d/1rKnX-1SFEQjjrPzSztbyxmrjtszLGeut/view
https://geom.io/bakery/wiki/index.php?title=Troubleshooting#Lightmaps_look_black_or_have_bad_quality_in_an_HDRP_scene


24/11/2020 Manual - Bakery GPU Lightmapper: Wiki

https://geom.io/bakery/wiki/index.php?title=Manual 19/19

bakery.RenderButton(bool showMsgWindows)

Render light probes only:

bakery.RenderLightProbesButton(bool showMsgWindows)

Render reflection probes only:

bakery.RenderReflectionProbesButton(bool showMsgWindows)

showMsgWindows tells if any dialog boxes/confirmations can be shown. Supressed, if set to false.

Check if baking is in progress:

ftRenderLightmap.bakeInProgress

For usage example check Batch Scene Baker script.

Retrieved from "https://geom.io/bakery/wiki/index.php?title=Manual&oldid=1069"

This page was last edited on 24 November 2020, at 17:43.

https://geom.io/bakery/wiki/index.php?title=Community_extensions#Batch_scene_baker
https://geom.io/bakery/wiki/index.php?title=Manual&oldid=1069

