incorporate InvokeAI into start_pipeline.py

This commit is contained in:
henrisel 2025-11-12 17:51:02 +02:00
parent fdd4ff827e
commit 590c62eadd
5 changed files with 209 additions and 100 deletions

View File

@ -8,7 +8,7 @@ load_dotenv()
ACCOUNT_ID = os.environ["CLOUDFLARE_ACCOUNT_ID"]
API_TOKEN = os.environ["CLOUDFLARE_API_TOKEN"]
def text_to_image(prompt, output_path):
def text_to_image_cloudflare(prompt, output_path):
MODEL = "@cf/black-forest-labs/flux-1-schnell"
URL = f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/{MODEL}"
@ -34,6 +34,8 @@ def text_to_image(prompt, output_path):
with open(output_path, "wb") as f:
f.write(img_bytes)
return True
def refine_text_prompt(prompt):
MODEL = "@cf/meta/llama-3.2-3b-instruct"

View File

@ -1,28 +1,81 @@
import torch
from diffusers import StableDiffusionPipeline, StableDiffusion3Pipeline
import time
import requests
start_timestamp = time.time()
#model = "stabilityai/stable-diffusion-3.5-medium" # generation time: 13 min
model = "stabilityai/stable-diffusion-3-medium-diffusers" # generation time: 10 min
#model = "stabilityai/stable-diffusion-2" # generation time: 4 sec
from invokeai_mcp_server import create_text2img_graph, enqueue_graph, wait_for_completion, get_image_url
from urllib.parse import urljoin
pipe = StableDiffusion3Pipeline.from_pretrained(model, torch_dtype=torch.float16)
#pipe = StableDiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
model_loaded_timestamp = time.time()
model_load_time = model_loaded_timestamp - start_timestamp
print(f"model load time: {round(model_load_time)} seconds")
INVOKEAI_BASE_URL = "http://127.0.0.1:9090"
prompt = "A majestic broadsword with a golden pommel, no background"
image = pipe(
prompt,
guidance_scale=3.0,
).images[0]
image_name = "image7.png"
image.save(f"images/{image_name}")
async def generate_image(arguments: dict):
generation_time = time.time() - model_loaded_timestamp
print(f"image generation time: {round(generation_time)} seconds")
# Extract parameters
prompt = arguments["prompt"]
negative_prompt = arguments.get("negative_prompt", "")
width = arguments.get("width", 512)
height = arguments.get("height", 512)
steps = arguments.get("steps", 30)
cfg_scale = arguments.get("cfg_scale", 7.5)
scheduler = arguments.get("scheduler", "euler")
seed = arguments.get("seed")
model_key = arguments.get("model_key")
lora_key = arguments.get("lora_key")
lora_weight = arguments.get("lora_weight", 1.0)
vae_key = arguments.get("vae_key")
print(f"Generating image with prompt: {prompt[:50]}...")
# Create graph
graph = await create_text2img_graph(
prompt=prompt,
negative_prompt=negative_prompt,
model_key=model_key,
lora_key=lora_key,
lora_weight=lora_weight,
vae_key=vae_key,
width=width,
height=height,
steps=steps,
cfg_scale=cfg_scale,
scheduler=scheduler,
seed=seed
)
# Enqueue and wait for completion
result = await enqueue_graph(graph)
batch_id = result["batch"]["batch_id"]
print(f"Enqueued batch {batch_id}, waiting for completion...")
completed = await wait_for_completion(batch_id)
# Extract image name from result
if "result" in completed and "outputs" in completed["result"]:
outputs = completed["result"]["outputs"]
# Find the image output
for node_id, output in outputs.items():
if output.get("type") == "image_output":
image_name = output["image"]["image_name"]
image_url = await get_image_url(image_name)
return urljoin(INVOKEAI_BASE_URL, image_url)
raise RuntimeError("Failed to generate image!")
def download_file(url, filepath):
response = requests.get(url)
if response.status_code == 200:
with open(filepath, "wb") as file:
file.write(response.content)
else:
raise RuntimeError(f"Failed to download image. Status code: {response.status_code}")
async def text_to_image_invoke_ai(prompt, output_path):
args = {
"prompt": prompt
}
image_url = await generate_image(args)
print("got image url: ", image_url)
download_file(image_url, output_path)

View File

@ -1,72 +0,0 @@
from invokeai_mcp_server import create_text2img_graph, enqueue_graph, wait_for_completion, get_image_url
from urllib.parse import urljoin
import asyncio
INVOKEAI_BASE_URL = "http://127.0.0.1:9090"
async def generate_image(arguments: dict):
# Extract parameters
prompt = arguments["prompt"]
negative_prompt = arguments.get("negative_prompt", "")
width = arguments.get("width", 512)
height = arguments.get("height", 512)
steps = arguments.get("steps", 30)
cfg_scale = arguments.get("cfg_scale", 7.5)
scheduler = arguments.get("scheduler", "euler")
seed = arguments.get("seed")
model_key = arguments.get("model_key")
lora_key = arguments.get("lora_key")
lora_weight = arguments.get("lora_weight", 1.0)
vae_key = arguments.get("vae_key")
#logger.info(f"Generating image with prompt: {prompt[:50]}...")
# Create graph
graph = await create_text2img_graph(
prompt=prompt,
negative_prompt=negative_prompt,
model_key=model_key,
lora_key=lora_key,
lora_weight=lora_weight,
vae_key=vae_key,
width=width,
height=height,
steps=steps,
cfg_scale=cfg_scale,
scheduler=scheduler,
seed=seed
)
# Enqueue and wait for completion
result = await enqueue_graph(graph)
batch_id = result["batch"]["batch_id"]
#logger.info(f"Enqueued batch {batch_id}, waiting for completion...")
completed = await wait_for_completion(batch_id)
# Extract image name from result
if "result" in completed and "outputs" in completed["result"]:
outputs = completed["result"]["outputs"]
# Find the image output
for node_id, output in outputs.items():
if output.get("type") == "image_output":
image_name = output["image"]["image_name"]
image_url = await get_image_url(image_name)
text=f"Image generated successfully!\n\nImage Name: {image_name}\nImage URL: {image_url}\n\nYou can view the image at: {urljoin(INVOKEAI_BASE_URL, f'/api/v1/images/i/{image_name}/full')}"
print(text)
# Fallback if we couldn't find image output
#text=f"Image generation completed but output format was unexpected. Batch ID: {batch_id}\n\nResult: {json.dumps(completed, indent=2)}"
async def main():
args = {
"prompt": "a golden katana with a fancy pommel"
}
await generate_image(args)
asyncio.run(main())

View File

@ -0,0 +1,122 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "50e24baa",
"metadata": {},
"outputs": [],
"source": [
"from invokeai_mcp_server import create_text2img_graph, enqueue_graph, wait_for_completion, get_image_url\n",
"from urllib.parse import urljoin\n",
"\n",
"import asyncio"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0407cd9a",
"metadata": {},
"outputs": [],
"source": [
"INVOKEAI_BASE_URL = \"http://127.0.0.1:9090\"\n",
"\n",
"\n",
"async def generate_image(arguments: dict):\n",
"\n",
" # Extract parameters\n",
" prompt = arguments[\"prompt\"]\n",
" negative_prompt = arguments.get(\"negative_prompt\", \"\")\n",
" width = arguments.get(\"width\", 512)\n",
" height = arguments.get(\"height\", 512)\n",
" steps = arguments.get(\"steps\", 30)\n",
" cfg_scale = arguments.get(\"cfg_scale\", 7.5)\n",
" scheduler = arguments.get(\"scheduler\", \"euler\")\n",
" seed = arguments.get(\"seed\")\n",
" model_key = arguments.get(\"model_key\")\n",
" lora_key = arguments.get(\"lora_key\")\n",
" lora_weight = arguments.get(\"lora_weight\", 1.0)\n",
" vae_key = arguments.get(\"vae_key\")\n",
"\n",
" #logger.info(f\"Generating image with prompt: {prompt[:50]}...\")\n",
"\n",
" # Create graph\n",
" graph = await create_text2img_graph(\n",
" prompt=prompt,\n",
" negative_prompt=negative_prompt,\n",
" model_key=model_key,\n",
" lora_key=lora_key,\n",
" lora_weight=lora_weight,\n",
" vae_key=vae_key,\n",
" width=width,\n",
" height=height,\n",
" steps=steps,\n",
" cfg_scale=cfg_scale,\n",
" scheduler=scheduler,\n",
" seed=seed\n",
" )\n",
"\n",
" # Enqueue and wait for completion\n",
" result = await enqueue_graph(graph)\n",
" batch_id = result[\"batch\"][\"batch_id\"]\n",
"\n",
" #logger.info(f\"Enqueued batch {batch_id}, waiting for completion...\")\n",
"\n",
" completed = await wait_for_completion(batch_id)\n",
"\n",
" # Extract image name from result\n",
" if \"result\" in completed and \"outputs\" in completed[\"result\"]:\n",
" outputs = completed[\"result\"][\"outputs\"]\n",
" # Find the image output\n",
" for node_id, output in outputs.items():\n",
" if output.get(\"type\") == \"image_output\":\n",
" image_name = output[\"image\"][\"image_name\"]\n",
" image_url = await get_image_url(image_name)\n",
"\n",
" text=f\"Image generated successfully!\\n\\nImage Name: {image_name}\\nImage URL: {image_url}\\n\\nYou can view the image at: {urljoin(INVOKEAI_BASE_URL, f'/api/v1/images/i/{image_name}/full')}\"\n",
" print(text)\n",
"\n",
" # Fallback if we couldn't find image output\n",
" #text=f\"Image generation completed but output format was unexpected. Batch ID: {batch_id}\\n\\nResult: {json.dumps(completed, indent=2)}\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6cf9d879",
"metadata": {},
"outputs": [],
"source": [
"async def main():\n",
" args = {\n",
" \"prompt\": \"a golden katana with a fancy pommel\"\n",
" }\n",
" await generate_image(args)\n",
"\n",
"asyncio.run(main())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,11 +1,13 @@
import os
import argparse
import asyncio
from pathlib import Path
from datetime import datetime
from dotenv import load_dotenv
from cloudflare_api import text_to_image, refine_text_prompt
from cloudflare_api import text_to_image_cloudflare, refine_text_prompt
from generate_image_local import text_to_image_invoke_ai
from generate_model_local import image_to_3d_api, image_to_3d_subprocess
load_dotenv()
@ -17,7 +19,7 @@ def get_timestamp():
return datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
def main():
async def main():
parser = argparse.ArgumentParser(description="Text to 3D model pipeline")
parser.add_argument("--prompt", type=str, required=True, help="User text prompt")
args = parser.parse_args()
@ -35,13 +37,15 @@ def main():
timestamp = get_timestamp()
pipeline_folder = Path(PIPELINE_FOLDER)
image_path = pipeline_folder / "images" / f"{timestamp}.jpg"
text_to_image(image_generation_prompt, image_path)
# TODO: use Invoke AI or Cloudflare, depending on env var
#text_to_image_cloudflare(image_generation_prompt, image_path)
await text_to_image_invoke_ai(image_generation_prompt, image_path)
print(f"Generated image file: {image_path}")
model_path = pipeline_folder / "models" / timestamp
model_file = image_to_3d_api(image_path, model_path)
#model_file_path = model_path / "0" / "mesh.glb"
print(f"Generated 3D model file: {model_file}")
if __name__ == "__main__":
main()
asyncio.run(main())